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Abstract Feature extraction and encoding represent two of the most crucial
steps in an action recognition system. For building a powerful action recogni-
tion pipeline it is important that both steps are efficient and in the same time
provide reliable performance. This work proposes a new approach for feature
extraction and encoding that allows us to obtain real-time frame rate process-
ing for an action recognition system. The motion information represents an
important source of information within the video. The common approach to
extract the motion information is to compute the optical flow. However, the
estimation of optical flow is very demanding in terms of computational cost,
in many cases being the most significant processing step within the overall
pipeline of the target video analysis application. In this work we propose an
efficient approach to capture the motion information within the video. Our
proposed descriptor, Histograms of Motion Gradients (HMG), is based on a
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simple temporal and spatial derivation, which captures the changes between
two consecutive frames. For the encoding step a widely adopted method is
the Vector of Locally Aggregated Descriptors (VLAD), which is an efficient
encoding method, however, it considers only the difference between local de-
scriptors and their centroids. In this work we propose Shape Difference VLAD
(SD-VLAD), an encoding method which brings complementary information
by using the shape information within the encoding process. We validated our
proposed pipeline for action recognition on three challenging datasets UCF50,
UCF101 and HMDB51, and we propose also a real-time framework for action
recognition.

Keywords Video Classification · Action Recognition · Histograms of Motion
Gradients (HMG) · Shape Difference VLAD (SD-VLAD) · Computational
Efficiency · Real-Time Processing

1 Introduction

Over the recent years an explosive growth in video content has occurred and
continues growing. As an example of this fulminant increase, Cisco forecast1

mentioned that the IP video would account for 80% of all IP traffic by 2019.
With this huge amount of multimedia content, computational efficiency has
become as important as the accuracy of the techniques.

Even though in the past several years there has been an important progress
in video analysis techniques, in particular on improving the accuracy of human
action recognition in videos [47, 49, 36, 45, 28, 48], the current methods in
terms of computational time are able to run with 1-3 frames per second. For
instance, in [45] is reported that the popular approach in [23] runs with 1.4
frames per second. Fast video analysis is important in many applications and
this issue of efficiency became very important for large-scale video indexing
systems or automatic clustering of large video collections.

The Bag of Visual Words (BoVW) framework with its variations [24, 47, 49]
has been widely used and showed its effectiveness in video analysis challenges.
The schematic view for a BoVW pipeline is represented in Fig. 1, which con-
tains in general three main steps: feature extraction, feature encoding and
classification. In addition to these main steps, the framework contains some
pre/post processing techniques, such as PCA, feature decorrelation and nor-
malization, which can influence considerably the performance of the pipeline.
The commonly used approach for classification is employing a fast SVM clas-
sifier over the resulted video representations. The encoding step creates a final
representation of the video and a very widely used approach is counting the
frequency of the visual words. However, recently super-vector based encoding
methods, such as Vector of Locally Aggregated Descriptors (VLAD) [16] and
Fisher Vector (FV) [33], obtained state-of-the-art results for many tasks.

1 http://newsroom.cisco.com/press-release-content?articleId=1644203

http://newsroom.cisco.com/press-release-content?articleId=1644203


Efficient Human Action Recognition using HMG and SD-VLAD 3

Video volume

Descriptor 
Extraction ClassificationDescriptor 

Encoding
Post-

processing
Pre-

processing

Fig. 1: The general pipeline for video classification.

The video contains two important sources of information: the static infor-
mation in the frames and the motion between frames. The feature extraction
step focuses mainly on these two directions. The first direction has the goal
to capture the appearance information in frames, such as Histogram of Ori-
ented Gradients (HOG) [7, 24]. The other direction is based on optical flow
fields like Histogram of Optical Flow (HOF) [24] and Motion Boundary His-
tograms (MBH) [8]. These descriptors are extracted and combined using Space
Time Interests Points (STIP) [23], dense sampling [51, 45] or extracting the
descriptors along some trajectories [41, 47, 49].

The pipeline in Fig. 1 represents also the common main phases for an action
recognition framework. For the classification part, the used approaches are
already mature, i.e., most of the existing works, such as [47, 49, 44, 32, 45], use
linear SVM, as this is a very fast and effective method. However, for descriptor
extraction and encoding there is still room for improvement. For an efficient
video classification system it is necessary that both, descriptor extraction and
encoding, to be efficient, otherwise if one of them is not competitive regarding
the performance, then the target cannot be reached. As one of the goals of this
work is to provide a very efficient system for video classification, we propose
new solutions for both steps: descriptor extraction and encoding.

Temporal variation within the videos provides an important source of infor-
mation about its content. Usually, the temporal information is computed with
an optical flow method. There is a large number of approaches for extracting
the optical flow fields, from relatively classic methods, such as [27, 14] to rel-
atively recent approaches like [13, 5, 54, 6], which use complex algorithms to
compute the motion information. The main drawback of those methods is the
high computational cost. This shortcoming becomes the bottleneck in many
applications. For instance, the authors in [47] report that optical flow takes
more than 50% of the total time for feature extraction. We present in this pa-
per a new efficient descriptor, called Histograms of Motion Gradients (HMG),
which is based on the motion information. The proposed HMG descriptor
captures the motion information using a very fast temporal derivation, which
enables us to have similar computational cost as HOG but with a significant
improvement in accuracy.

The final representation of the video is one of the key factors for visual
recognition such as human action recognition. We can see that in most of
the research works in computer vision and multimedia [49, 32, 45] the super
vector-based encoding methods are shown to outperform the other encoding
methods. Vector of Locally Aggregated Descriptors (VLAD) [16] is one of
the most popular and efficient super vector-based encoding methods which
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proved its efficiency in creating the final representation of a video for action
recognition tasks. Besides its performance, VLAD has several drawbacks. It
considers only the mean to represent a cluster of features and also keeps only
the first-order statistics and ignores other source of information. The mean is
not enough to reflect a distribution, but in general, the mean and the stan-
dard deviation can be enough to capture the statistics. To address this issue,
this work proposes to improve VLAD by keeping the standard deviation in-
formation and incorporating shape information as the difference of standard
deviations between the altered standard deviation of local descriptors and the
standard deviation of the visual word. This new encoding method, Shape Dif-
ference for VLAD (SD-VLAD), captures the distribution shape of the features
and brings complementary information to the original VLAD.

The main contributions of this work can be summarized with the following:

– We introduce a new descriptor (HMG), which captures the motion infor-
mation using a simple temporal derivation, without the need of using the
costly optical flow. We make the code for descriptor extraction available2;

– We propose a new encoding method (SD-VLAD), which captures shape
information within the encoding process, providing the best trade-off be-
tween accuracy and computational cost. We make the code for descriptor
encoding available2;

– We adopt several speed-ups, such as fast aggregation of gradient responses,
reuse subregions of aggregated magnitude responses, and frame subsam-
pling, which make the pipeline more efficient;

– We propose an integration of our descriptor and encoding method in a
specifically designed video classification framework which allows for real-
time performance while maintaining the high accuracy of the results.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 introduces our new proposed descriptor with the adopted
approaches for improving the efficiency. The new encoding method is presented
in Section 5.4. The experimental evaluation and the comparison with state-of-
the-art are presented in Section 5. Finally, Section 6 concludes this work.

2 Related work

There are mainly two directions to extract features from a video: hand-crafted
and deep learning. One of the state-of-the-art approaches in the hand-crafted
category is represented by Improved Dense Trajectory (IDT) [49], where the
main goal is to track some points through the video and to extract different
descriptors along the trajectories of the points. The work in[49] is an extension
of [47] by using an algorithm to cancel the camera motion to obtain more reli-
able features. The work in [23] proposes Space Time Interests Points (STIP),
it has successfully adapted interest points from the domain of images to the
domain of video by extending the Harris detector to space-time interest points.

2 https://iduta.github.io/software.html

https://iduta.github.io/software.html
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The work in [51, 45, 12] uses dense sampling approach. The authors of [51]
evaluated several interest point selection methods and several spatio-temporal
descriptors. They found that dense sampling methods generally outperform
interest points, especially on more difficult datasets.

The previously mentioned methods establish the region of extracting for
several standard descriptors, such as Histogram of Oriented Gradients (HOG)
[7, 24], Histogram of Optical Flow (HOF) [24] and Motion Boundary His-
tograms (MBH) [8]. The work in [25, 24] considers Spatial Pyramid (SP) ap-
proach to capture the information about features location. The works in [18,
34] focus on improving the efficiency of action recognition by exploring differ-
ent alternatives for the computation of the standard optical flow.

Recently, the approaches based on Convolutional Neural Networks (CNN)
[19, 37, 36, 53, 42, 30, 3] have proven to obtain very competitive results com-
pared to traditional hand-crafted methods. In general, for action recognition
tasks, these works use the two-stream approach where one network is trained
on the static images and another network is trained on the optical flow fields.
In the end there is a fusion over the output of both networks to provide the
final result. The work in [9] uses a hybrid representation by combining hand-
crafted with deep features and takes advantage of different techniques to boost
the performance. The work in [52] is fully based on deep features, modeling
long-range temporal structure and using a series of good practices to improve
the network performance.

The feature encoding is a very important step for action recognition and in-
fluences considerably the performance of the general framework. Vector based
approaches showed to be very competitive for this step. The most popular
super vector encoding methods are: Fisher Vector (FV) [33], Vector of Locally
Aggregated Descriptors (VLAD) [16] and Super Vector Coding (SVC) [55]. FV
was initially introduced for large-scale image categorization [33]. This encod-
ing method combines the benefits of generative and discriminative approaches
and aggregates the first- and the second-order statistics. FV is performing a
soft assignment which in general gives better performance, however, this af-
fects the computational cost. The work in [21] proposes an extension to Spatial
Fisher Vector (SFV) which computes per visual word the mean and variance
of the 3D spatio-temporal location of the assigned features. VLAD encoding
method can be viewed as a simplification of FV which keeps only first-order
statistics and performs hard assignment, which makes it much faster than FV.
SVC method keeps the zero-order and first-order statistics, thus SVC can be
seen as a combination between Vector Quantization (VQ) [38] and VLAD.

There are many precursors who focus on improving VLAD representation,
as this is an efficient super vector based encoding method with very competi-
tive results in many tasks. The work in [28] proposes to use Random Forest in a
pruned version for the trees to build the vocabulary and then they additionally
concatenate second-order information, similar as in FV. Differently from their
approach, in this article we keep k-means as clustering method and incorporate
second-order information by difference of standard deviations. Another recent
work which boosts the performance of VLAD is presented in [31], where the au-
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thors suggest improving VLAD by concatenating the second- and third-order
statistics, and using supervised dictionary learning. Our approach is different
as we consider additionally only the second-order information and build the
dictionary in an unsupervised manner. Furthermore, we have a different defi-
nition for the first-order statistics by incorporation in the representation the
standard deviation, and also our second-order statistics is different in a main
key point that we consider an altered standard deviation of local descriptors
by counting on the global mean of the cluster instead of local mean of the
descriptors. The work in [11] focuses on improving VLAD by using a double
assignment approach, and the work in [10] incorporates within the encoding
process the spatio-temporal information showing a consistent improvement in
accuracy.

The work in [2] proposes to use intra-normalization to improve VLAD per-
formance. The impact of this approach is to suppress the negative effect of
the high values within the vector, which can dominate the similarity between
vectors. The authors propose to L2 normalize the aggregated residuals within
each VLAD block. We consider also intra-normalization in our framework. Fur-
thermore, they use vocabulary adaptation as an efficient approach to extend
the vocabulary to another dataset. In [1] it is proposed RootSIFT normaliza-
tion to improve the performance of the framework for object retrieval. This
normalization approach is based on the idea to reduce the influence of large
bin values, by computing square root of the values.

Inspired by these previous works, in this paper we propose a new head-
crafted descriptor and an extended version for VLAD. The proposed descrip-
tor, Histograms of Motion Gradients (HMG), is computed by initially extract-
ing the motion information by applying a fast temporal derivation between
two consecutive frames, then for the resulted ”motion image” we compute the
horizontal and vertical gradients. From the obtained gradients we compute the
magnitude and the angle, and we apply then the quantization and aggregation
step to create the final descriptor for a video. For the encoding method, we
propose Shape Difference for VLAD (SD-VLAD) where initially a codebook
is learnt with k-means and then we compute the final representation with two
formulas, one is based on the residual information and the other is focalized on
capturing the information regarding the distribution shape by computing the
difference between standard deviations. Both source of information are com-
plementary to each other and their combination boosts the performance of the
encoding method while achieving a low computational complexity. Our new
approach for feature extraction and encoding allows us to build a very efficient
pipeline for video classification, being able to run at more than real-time frame
rate.
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Fig. 2: Visualization of the process for capturing the motion information for the HMG
descriptor. We initially perform a fast temporal derivation over each two consecutive frames,
which provides us the motion image. Then we compute the horizontal and vertical gradients
for the resulted motion image. The pixels depicted in blue color represent the negative values
after temporal derivation.

3 Proposed HMG method for descriptor extraction

In this section we introduce the proposed method for capturing motion infor-
mation from the video. We present several speed-ups that make the framework
very efficient, being able to achieve real-time processing.

3.1 Histograms of Motion Gradients (HMG)

Our descriptor, Histograms of Motion Gradients (HMG), is based on a tem-
poral derivation to compute the motion information and it is integrated in the
first step of an action recognition framework Fig. 1. The illustration of the
process of capturing the temporal information is presented in Fig. 2. For each
two consecutive frames we first compute the temporal derivation:

T(i,i+1) =
∂(Fi, Fi+1)

∂t
(1)

where Fi is the frame at time index i.
The temporal derivative is computed very effectively by applying a simple

and fast filter window [1 -1] for each two consecutive frames (Fi, Fi+1). The
result of this operation is illustrated in the middle image of Fig. 2, where we can
observe that the information about the motion between two frames is kept.
We can call the output of the applied temporal derivative ”motion image”.
Obviously, after applying the temporal derivation some values are negative,
depending on the result of derivation between the pixels in frame i and frame
i+ 1, we represent the negative values with blue color in Fig. 2.
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After the computation of the temporal derivative, we compute the spatial
gradients of the resulted motion image, which allows us to compute the mag-
nitude and the angle of the gradient responses. In the right part of Fig. 2 there
are represented the horizontal and vertical gradients, computed with:

X(i,i+1) =
∂T(i,i+1)

∂x
, Y(i,i+1) =

∂T(i,i+1)

∂y
(2)

For the computation of spatial gradients we use also the simple and fast
filter window [1 0 -1], similar as for HAAR-features. The gradients with this
mask are computed much faster than, for instance, Gaussian derivatives. Ba-
sically, the gradients with this filter are obtained by making the difference
between a frame and its shifted values with one position, once horizontally
and once vertically. This makes the computation of gradients very fast.

After we obtain the spatial derivatives, similar as for HOG, we compute
the magnitude and the angle:

mag =
√
X2 + Y 2, θ = arctan

(
Y

X

)
(3)

where each operation from the above formulas is element-wise.
The result of these operations is a 2-dimensional vector field per each new

motion frame. We quantize the orientation (θ) in 8 directions/bins and then
we accordingly accumulate the magnitude corresponding to each bin. This is
similar to how gradient responses are accumulated in SIFT [26]. The next step
is to perform the aggregation of those quantized responses over blocks in both
spatial and temporal direction. Then we concatenate the responses over several
adjacent blocks. We provide in the next subsection the details about the pro-
cedure of dividing the video in blocks and volumes. Afterwords, the pipeline in
Fig. 1 continues with the next step by applying some pre-processing operations
before feature encoding, such as normalization and PCA with decorrelation of
features. The next steps after the descriptor extraction are very important
for the performance of our descriptor. For instance, the descriptors obtained
from the motion image may include noise which can result in high peaks that
can dominate the entire vector representation. To reduce the negative influ-
ence of this aspect, over the initial representation of the descriptors we apply
RootSIFT normalization [1], which penalizes more the high values within the
vector, contributing to creating a smoother vector (without large peaks) to
represent each local extracted descriptor.

3.2 Speed-up HMG extraction

For our proposed descriptor we use a dense sampling strategy to extract the
features. In addition to the presented approach for capturing the motion infor-
mation very efficiently and using fast filters for derivatives, we describe several
speed-ups that improve the efficiency of the descriptor extraction process of
HMG. The efficiency improvement is performed by taking the advantage of
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Fig. 3: The process of dividing the video in blocks and volumes. The part depicted in green
represents an illustration of a volume created from 3 by 3 by 2 blocks.

the densely sampled approach and by adopting to our new descriptor several
speed-ups presented in [45].

1) Reuse of blocks: Our choice to establish the region of the descriptor
extraction is the use of dense sampling strategy since this method has a big
potential for efficiency. It can be also easily extended to an even faster version
using parallelization. Furthermore, in several works, it has been found to be
more accurate than keypoint-based sampling in images [17] and videos [51, 32].
We take advantage of the densely sampled descriptor nature in order to speed
up the feature extraction time. Fig. 3 illustrates an example for dividing the
video into blocks, and how a volume is created of several adjacent blocks. Our
HMG descriptor is extracted on a single scale over each block, which consists
of 8 by 8 pixels by 6 frames. The size of the blocks is also our dense sampling
rate. The green part from the Fig. 3 represents a video volume, where the
responses over several adjacent blocks are concatenated for creating the final
descriptor. Each video volume consists of 3 by 3 by 2 blocks, corresponding
to x, y and t axis. By choosing the sampling rate equally with the block size,
then we can reuse the blocks for making the descriptor extraction efficient.
Therefore, the representation for a block is computed only once and then use
it for the construction of all the volumes around that block. For instance, each
block can be reused for 18 times (excepting the blocks on the borders) for the
current size of the video volume: 3 by 3 by 2 blocks.

2) Fast aggregation of responses: After we compute the magnitude and the
angle, the resulted responses are aggregated for each block. We adopted the
approach in [43]. Basically we compute the aggregation of all the frame pixels
by doing just a multiplication of three matrices. After the spatial aggrega-
tion of 8 by 8 pixels and the temporal aggregation of 6 frames, each block
is characterized by 8 values as we consider 8 orientations for quantization of
responses. Having 8 bins and a size of 3 by 3 by 2 for video volume, the original
dimensionality of our descriptor is therefore 144.
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3) Frame subsampling: For efficiency reasons we evaluate HMG by sub-
sampling video frames. Subsequent frames contain redundant information, and
the computational cost can be substantially improved by frame subsampling.
We evaluate the impact on the accuracy and efficiency of our descriptor by
skipping frames. A detailed analysis of the trade-off between accuracy and
computational time is presented with the experimental results.

4 Proposed SD-VLAD method for descriptor encoding

In this section we present our encoding method for human action recognition.
We first review the original VLAD representation.

4.1 VLAD representation

VLAD is initially proposed in [16] and can be seen as a simplification of the
FV. For the VLAD pipeline first a codebook of k visual words is learned
with k-means, M = {µ1, µ2, ..., µk}, which are the means for each cluster. For
each visual word a subset of local descriptors is assigned based on the nearest
neighborhood criterion, Xi = {x1, x2, ..., xni

}, where x is a feature vector and
ni is the number of assigned features to the i-th visual word. The idea of VLAD
is to accumulate for each visual word the residuals (the differences between
the assigned descriptors and the centroid):

vi =

ni∑
j=1

(xj − µi) (4)

The final VLAD representation is a concatenation of all vectors vi and the final
dimensionality of VLAD is k× d, where d is the dimension of the descriptors.
The VLAD performance can be boosted by using intra-normalization [2], which

normalize independently each VLAD block vi:
vi
||vi||p

, usually p = 2 (i.e., the

L2 norm).

4.2 Shape Difference for VLAD

The original VLAD is based only on the mean as statistical information,
however, for describing a set of descriptors it is more informative to have
at least the mean and standard deviation of them. The residuals computed
by VLAD algorithm can provide only partial cluster distribution information.
Fig. 4 shows a case when VLAD fails to provide a good discriminative rep-
resentation. Even if the centroids µ1 and µ2 are completely different and the
feature distribution assigned to each cluster differs significantly, the standard
VLAD returns the same representation, therefore, the sums over the residuals
v1 and v2 are completely equal ([1 -8]). Also in the case when the features are
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Fig. 4: An illustrative example when VLAD fails to provide a reliable representation. Each
descriptor is assigned to its nearest centroid, µ1 or µ2. Even though the distribution of
the assigned descriptors to each visual word is completely different, the result of VLAD
representation (computed with the standard formula (4)) is equal with [1 -8] for both, v1
and v2. In this case, only the computation of the residuals is not enough for obtaining a
reliable description.

distributed in a symmetrical arrangement around the centroid, then the sum
over the residuals is a vector of zeros, this leading to making no difference
between the results of a cluster with features distributed symmetrically and a
cluster with no features assigned.

For providing a more discriminative representation, it is necessarily to in-
troduce more statistical information. We propose Shape Difference for VLAD
(SD-VLAD), which captures information related to the distribution shape of
the descriptors. Our final representation is computed with two formulas. Simi-
lar to FV, for the first formula, the residuals are divided by standard deviation,
and our first part of the final representation is represented as:

vµi =
1

ni

ni∑
j=1

xj − µi
σi

(5)

where ni is the number of descriptors assigned to the cluster µi and σi is the
standard deviation of the cluster with the mean µi.

The division by the number of descriptors, that switches sum pooling to
average pooling, is a very simple technique to deal with the problem of bursti-
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ness when some parts of VLAD can dominate the entire representation. In
the end, these components will have a greater weight for the classifier and
influence negatively the performance. This normalization, with the number of
descriptors assigned, becomes more important if no intra-normalization tech-
nique is used. Intra-normalization is a better strategy to deal with the problem
of burstiness, but there are some cases when intra-normalization is not rec-
ommended. For instance, in [32] it is underlined that intra-normalization may
have a negative effect for sparse features like STIPs.

By considering the normalization (with the number of descriptors assigned)
for VLAD, the Equation (4) becomes:

v̄i =
1

ni

ni∑
j=1

(xj − µi) =
1

ni
(

ni∑
j=1

(xj)− niµi) =
1

ni

ni∑
j=1

(xj)− µi = µ̂i − µi (6)

where µ̂i is the mean of the local descriptors assigned to the cluster µi. In
this way, VLAD can be seen as the difference between the mean of the local
descriptors and its assigned visual word.

To address the shortcoming of VLAD considering only the mean as sta-
tistical information, we consider in our representation the shape information.
Starting from the Equation (6) we can go further with the analogy (the dif-
ference between standard deviations) and build the shape difference represen-
tation as following:

vσi = σ̂i − σi =

 1

ni

ni∑
j=1

(xj − µi)2
 1

2

− σi (7)

where σ̂i is the altered standard deviation of the local descriptors assigned
to cluster µi and σi is the standard deviation of the cluster µi; the power of
a vector is the element-wise power. We compute the standard deviation for
the local descriptors by using the mean of the cluster and not the local mean
of assigned descriptors due to the fact that the local mean of the assigned
descriptors may not contain statistical information, as there are many cases
when too few descriptors (even one or two descriptors) are assigned to a cluster,
especially when the number of clusters is increased. Making the difference of
descriptors and their local mean can lead to cases with no information. Instead,
by considering the mean of the cluster, which is computed on a large number
of descriptors, the difference is more stable, especially for the cases with less
descriptors assigned to a cluster.

The shape difference brings complementary information related to the
mean, in the experimental part of the paper we show that it is beneficial
for the classifier. For our final SD-VLAD representation we concatenate the
resulting vectors from vµ and vσ (Equation (5) and Equation (7)). We apply
also intra-normalization L2 for each vµi and vσi .
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5 Experimental Evaluation

The general pipeline used for evaluation is the one presented in Fig. 1, and
more details for each step are presented in the remaining part of the paper.

In the following we present: the datasets used for evaluation (Section
5.1); experimental setup (Section 5.2); comparison of the proposed descriptor
with other dense methods (Section 5.3); evaluation of the proposed encoding
method together with different standard approaches (Section 5.4); compari-
son of our proposed descriptor with Improved Dense Trajectories approach
(Section 5.5); the impact of the frame subsampling on the accuracy and on
the computational cost (Section 5.6); the proposed pipeline for real-time video
classification (Section 5.7); comparison with the state-of-the-art approaches
(Section 5.8).

5.1 Datasets

We evaluate our framework on three of the most popular and challenging
datasets for action recognition: UCF50 [35], UCF101 [40] and HMDB51 [22].

The UCF50 dataset [35] contains 6,618 realistic videos taken from YouTube.
There are 50 human action categories mutually exclusive, which range from
general sports to daily life exercises. The videos are split into 25 predefined
groups. We follow the recommended standard procedure and perform leave-
one-group-out cross validation and report average classification accuracy over
all 25 folds.

The UCF101 dataset [40] is a widely adopted benchmark for action recog-
nition, consisting in 13,320 realistic videos, which are divided into 25 groups
for each action category. This dataset contains 101 action classes and there
are at least 100 video clips for each class. We follow for evaluation the recom-
mended default three training/testing splits. We report the average recognition
accuracy over these three splits.

The HMDB51 dataset [22] contains 51 action categories, with a total of
6,766 video clips extracted from various sources, such as Movies, the Prelinger
archive, Internet, Youtube and Google videos. It is one of the most challenging
dataset with realistic settings. We use the original non-stabilized videos, and
we follow the original protocol using three train-test splits [22]. We report
average accuracy over the three splits as performance measure.

5.2 Experimental setup

For evaluation of our proposed HMG descriptor the baseline is to use dense
sampling with 8 by 8 pixels by 6 frames as in [44, 45] and the gradient mag-
nitude quantized in 8 orientations. The final descriptor is a concatenation of
3 by 3 by 2 blocks. For the pre-processing step we perform RootSIFT [1] nor-
malization and then we apply PCA to reduce the dimensionality by a factor
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Table 1: Accuracy and efficiency comparison of various dense descriptors (results reported
on the UCF50 dataset, best result is in bold).

descriptor HOG HOF MBHx MBHy HMG

accuracy 0.762 0.799 0.784 0.792 0.814
seconds/video 2.67 4.03 4.37 4.37 2.73
frames/second 73.50 48.61 44.80 44.84 71.73

of two and decorrelate the features. This yields a final descriptor dimension of
72. We use spatial pyramid in all our experiments, we divide all the frames of
the video into three horizontal parts which roughly correspond to a ground,
object, and sky division.

The codebook for each experiment needed for feature encoding is built from
randomly sampled 500K features of the training set for the specific tested
dataset. For the resulted vectors after descriptor encoding we apply power
normalization followed by L2 for the super-vector based encoding methods
and power normalization followed by L1 for all other visual word assignment
methods. The parameter α for power normalization is initially fixed to 0.5.
We perform the classification with SVMs, with a linear kernel for super-vector
based encoding methods and histogram intersection kernel for all other encod-
ing methods, with C = 100.

We initially compare our descriptor with dense HOG, HOF, MBHx and
MBHy using the available code from [44, 45]. For these descriptors we use the
same settings and speed-ups as presented for HMG, see Section 3. The optical
flow for HOF, MBHx and MBHy is computed with Horn-Schunck method [14]
using the Matlab Computer Vision System Toolbox as recommended in [45].
In [45] is presented a detailed evaluation of using different optical flow ap-
proaches with the conclusion that Horn-Schunck method provides the best
trade-off between the accuracy and computational efficiency. The timing mea-
surements are performed on a single core Intel(R) Xeon(R) CPU E5-2690
2.60GHz, using 500 randomly sampled videos (10 videos for each class) from
the UCF50 dataset. We report the average of the number of seconds per video
and the number of frames per second that the system can process. We perform
the parameter tuning on the UCF50 dataset.

5.3 Comparison to dense descriptors

In this part we present a first comparison between the proposed HMG de-
scriptor and popular dense descriptors for action recognition: HOG, HOF,
MBHx and MBHy [45]. The comparison is conducted in terms of accuracy
and computational cost. All the descriptors benefit of the same settings and
the same speed-up approaches presented above for the HMG descriptor. All
dense descriptors are extracted using only the intensity information. All the
computational time measurements for descriptor computation include also the
loading time of the video and converting the frames to graylevel. For this set
of experiments we use Fisher Vector (FV) [33] as encoding method, with the
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common setting of 256 clusters. We choose FV for this set of experiments as
this is a standard widely used encoding method for action recognition task,
thus, the direct comparison with other approaches is straight forward.

The comparative results are presented in Table 1. Our approach of comput-
ing the motion information by applying a simple and efficient temporal filter
does not affect significantly the computational cost as compared with the fast
HOG descriptor. While the efficiency is preserved, in terms of accuracy our
HMG descriptor outperforms with a large margin HOG, by 5.2 percentage
points. This significant performance improvement while preserving the effi-
ciency shows that the motion information captured by our descriptor is very
discriminative for videos and can be considered as a good option for the appli-
cations based on video analysis, especially for those where the computational
cost is crucially important. Remarkably, HMG outperforms even descriptors
based on classical optical flow which are more demanding for computational
cost. For instance, HMG outperforms HOF by 1.5 percentage points in terms
of accuracy, moreover, the descriptor extraction for HMG runs with approx-
imately 72 frames/second while HOF runs only at around 49 frames/second.
This big difference in efficiency is due to the optical flow computation, which
can take up to 50% of the cost for HOF extraction.

5.4 Feature Encoding

In this set of experiments we make the first comparison of our proposed en-
coding method, SD-VLAD, with the other standard approaches for creating a
final representation that serves as input for a classifier.

In this part we compare our dense HMG descriptor with dense HOG, HOF,
MBHx and MBHy for Bag-of-Visual-Words (BoVW) using three approaches
for visual word assignment: k-means, hierarchical k-means (hk-means) and
Random Forests (RF) [4]. In addition we use other three variations of BoVW:
Fisher Vectors (FV) [33] and Vector of Locally Aggregated Descriptors (VLAD)
[16], and the proposed method Shape Difference VLAD (SD-VLAD). For k-
means and hk-means we use the implementation made available with VLFeat
[46]. For both we create a codebook of 4,096 visual words. For hk-means we
learn a hierarchical tree of depth 2 with 64 branches per node. RF are well-
known for their speed, they are binary decision trees, learned in a supervised
manner by randomly picking several descriptor dimensions at each node with
several random thresholds. The split with the highest Entropy Gain is selected.
We follow the recommendations of [43, 44, 45], using 4 binary decision trees
of depth 10, which create a codebook of 4,096 visual words.

For FV we keep the codebook size of 256 clusters. We test VLAD repre-
sentation with 256 and also with 512 visual words for making the comparison
between super vector-based encoding methods more fair. For SD-VLAD we fix
the codebook size to the standard 256 words. For VLAD and SD-VLAD we
apply also intra-normalization L2 as explained in the previous section.
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Table 2: Accuracy vs. processing time for different encoding methods and using several dense
descriptors (results reported on the UCF50 dataset, best results are in bold).

k-means hk-means RF FV VLAD VLAD SD-VLAD
(256) (512)

HOG 0.731 0.720 0.718 0.762 0.712 0.731 0.768
HOF 0.789 0.779 0.738 0.799 0.810 0.815 0.833
MBHx 0.772 0.760 0.731 0.784 0.782 0.795 0.800
MBHy 0.783 0.774 0.750 0.792 0.799 0.814 0.820
HMG 0.781 0.759 0.735 0.814 0.805 0.822 0.834

sec/video 8.42 0.37 0.05 2.09 0.37 0.56 0.38
frame/sec 24 526 3788 94 532 352 513

The results for different encoding methods are presented in Table 2, which
confirm that super-vector encoding methods give a better video representation
than the other encoding approaches. The superiority of super-vector encoding
methods is due to the fact that they capture information related to the mean
and variance/standard deviation of the features and not only the member-
ship information of the features to the clusters. Our HMG descriptor is very
competitive for all the encoding methods, especially for super-vector encod-
ing methods, which outperforms all the other descriptors, with an accuracy of
0.834 accuracy for SD-VLAD.

The computational cost for the encoding step is not dependent on the type
of features, it depends on the number of visual words and the dimensionality of
descriptors. As all our descriptors have the same dimensionality, we reported
the computational cost for encoding a descriptor (can be any) with 72 dimen-
sions. The RF approach for encoding step is by far the fastest and takes 0.05
seconds per video, however, the accuracy drops significantly for all descrip-
tors related to the best encoding method for the performance. The results
for hk-means represents a good trade-off between accuracy and computational
efficiency. It can process the video at a frame rate of 526. When the speed
is crucially important then RF is the best choice, encoding the features with
3,788 frames per second.

After these experiments we can take the conclusion that super-vector based
encoding methods give the best performance. For SD-VLAD the most de-
manding part for the computational cost is the the codebook assignment and
this is the reason that the efficiency of SD-VLAD is similar to the baseline
VLAD256. The computation of an extra representation for SD-VLAD does
not increase significantly the computational cost. For feature encoding, SD-
VLAD represents the best trade-off between accuracy and computational effi-
ciency, running at a frame rate of 513 frames/second. Regarding the encoding
method, our goal is to find the best approach for the accuracy of the system
and the method with best trade-off between computational cost and accuracy
of the pipeline. Considering this, for the further experiments we use only super
vector-based encoding methods and we perform some supplementary tests to
establish the best approach for the encoding choice.
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Fig. 5: Impact of the normalization parameter on the Fisher Vector performance for the
UCF50 dataset.

5.4.1 Improving the performance

The post-processing step after the encoding method can boost the performance
of the system by preparing the input for the classifier. After feature encoding,
for the resulted vector of the video representation we apply before classification
Power Normalization followed by L2-normalization (||sign(x)|x|α||, where 0 ≤
α ≤ 1 is the normalization parameter), we call this PNL2. The effect of this
normalization is reducing the peaks within the vector. It is very important for
the performance of the system that the values within the vector are not spread
on a large interval, since high peaks will dominate the distances between the
vectors. As the classifier receives as input the distances between the vectors,
the peaks receive a higher weight and the other components of the vector will
contribute less, in the end this may influence negatively the classifier output.
The α parameter from PNL2 controls the level of penalization, by giving a
smaller α, the large values are shrinked more and reduce the peaks within the
vector.

We perform the α parameter tuning within the interval [0.1; 1], with the
step 0.1. Fig. 5 presents the graphs with the impact of the normalization for
FV. We can see that the accuracy is drastically affected by the α normalization
parameter for PNL2. There is a continuous increase in performance of all the
descriptors when choosing a smaller α. The α = 1 actually means that only
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Fig. 6: Impact of the normalization parameter on the SD-VLAD performance for the UCF50
dataset.

L2 normalization is applied, and the performance boost between α = 1 and
α = 0.1 is 18.1 percentage points on HOG, 14.9 on HOF, 12.2 on MBHx, 13.8
on MBHy and 14.5 for HMG. This considerable increase in performance for
FV when PNL2 is applied with a small α is due to the fact that the resulted
final vector after applying the encoding contains large peaks, having a large
interval for the values. This is caused by the FV formulation which is built
using two different formulas that provide in the end different intervals for the
values. PNL2 with a small α helps in bringing the values in a smaller interval,
reducing the peaks, and therefore, the distances between vectors are more
reliable. For all the next experiments we set α = 0.1 for PNL2 when using FV
as encoding method.

Fig. 6 shows the parameter tuning for PNL2 when using SD-VLAD as
encoding method. In this case the influence of α normalization parameter is
not that radical. This is due to the fact that we apply intra-normalization L2
when encoding the features with SD-VLAD and therefore, the peaks within
the vector are already reduced. However, if intra-normalization is not used
during the encoding process then we recommend to use PNL2 with a very
small α for the resulted vector, similar as for FV. For all the next experiments
we keep the initial setting of PNL2 with α = 0.5 for VLAD and SD-VLAD.
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Table 3: Performance comparison between Euclidean distance (E. dist.) and inner product
(inner p.) used for the assignment step during the encoding process (results reported on the
UCF50 dataset, best results are in bold).

VLAD256 VLAD512 SD-VLAD
E. dist. inner p. E. dist. inner p. E. dist. inner p.

HOG 0.712 0.717 0.731 0.735 0.768 0.772
HOF 0.810 0.812 0.815 0.823 0.833 0.835
MBHx 0.782 0.789 0.795 0.801 0.800 0.802
MBHy 0.799 0.802 0.814 0.816 0.820 0.822
HMG 0.805 0.809 0.822 0.823 0.834 0.834

sec/video 0.37 0.20 0.56 0.32 0.38 0.23
frame/sec 532 971 352 620 513 848

5.4.2 Improving the efficiency

From the previous experiments we can take the conclusion that FV and SD-
VLAD provide the best results. SD-VLAD is the choice for a trade-off between
the computational cost and accuracy. One of the reasons for which VLAD and
SD-VLAD are more efficient than FV is the assignment approach. The VLAD
based encoding methods use hard assignment while FV uses soft assignment
making this step more demanding for the computational cost.

VLAD and SD-VLAD are the choices for a trade-off between accuracy
and computational cost. In this set of experiments we investigate how we can
improve the computational cost for VLAD and SD-VLAD methods without
affecting negatively the accuracy. The assignment step is the most demanding
part for the computational time of an encoding method. To decide to which
centroid a feature belongs, it is necessary to compute the distance to all cen-
troids of the codebook and to assign the feature to the closer visual word.
We evaluated two approaches to compute the distances. First approach is to
use the standard Euclidean distance. After we compute the distances we take
the minimum value to decide to which visual word the feature belongs. The
second approach is to use inner product to compute the distances. By making
unit length for both vectors for which we compute the distance we can apply
inner product operation as a measurement for the distance. In this case, to
decide to which centroid a feature belongs we take the maximum value among
the computed inner products. If all feature vectors have the same length (e.g.
unit length), then taking the maximum inner product is equivalent to taking
the minimum Euclidean distance.

Table 3 presents the comparison results between Euclidean distance and
the inner product used for the assignment step within the encoding process.
We can see that the encoding method is much faster when using the inner
product than in the case of Euclidean distance, being able to improve the
computational cost from 513 to 848 frames per second for SD-VLAD. The
slight improvement of the accuracy is the effect of applying L2 norm for making
unit length when we compute the inner product. For all next experiments we
use the inner product for the assignment step when VLAD-based methods are
used for encoding.
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Table 4: A closer comparison of the computational cost and the accuracy with the direct
competitors on the encoding approach (results reported on the UCF50 dataset, best results
are in bold).

HOG HOF MBHx MBHy HMG sec/video frame/sec

VLAD256 0.717 0.812 0.789 0.802 0.809 0.20 971
VLAD512 0.735 0.823 0.801 0.816 0.823 0.32 620
H-VLAD [31] 0.755 0.825 0.800 0.809 0.820 0.38 520
SD-VLAD 0.772 0.835 0.802 0.822 0.834 0.23 848

5.4.3 Closer comparison of SD-VLAD with direct competitors

Our proposed encoding method, SD-VLAD, provides the best trade-off be-
tween the accuracy and computational cost. We provide a direct comparison
of our method with the closest approaches for the encoding step. The closest
approaches to ours are represented by VLAD [16] and the work in [31]. The
authors in [31] use high-order statistics for VLAD and dictionary learning to
boost the performance. They use three order statistics, which makes the final
vector three times bigger than VLAD.

The goal of this comparison is to discover which formulas are better to
compute the final representation that will serve as input for the classifier. Of
course, in this comparison all the methods benefit of the same settings includ-
ing using intra-normalization L2 and inner product for the assignment step.
As in the previous experiments, the computational time reported includes also
the time for making the unit length for the vectors needed for inner product
and also the time for intra-normalization. Furthermore, besides the fact that
the vocabulary is build in the same way for all approaches, for VLAD256, H-
VLAD [31] and for SD-VLAD we use also the same codebook (this is straight
forward as we use for all 256 visual words for the codebook size), which makes
the comparison more reliable as the randomness of constructing the codebook
is excluded.

Table 4 presents the efficiency and performance comparison for all five
dense descriptors. In terms of accuracy our approach outperforms the other
methods for all descriptors by a large margin. Furthermore, the dimensionality
of our final vector is 33% less than the representation in [31], as we concatenate
two order information and they concatenate three order statistics. In general,
high order information leads to a good improvement compared to the original
VLAD. In terms of computational cost, VLAD256 is the fastest. VLAD512
and H-VLAD are almost twice as slow with moderate accuracy improvements.
In contrast, SD-VLAD is almost as fast as VLAD256 yet gives the highest
accuracies of all encoding methods.

For a better understanding of the performance contribution, Table 5 presents
the accuracy comparison of each representation component of SD-VLAD with
the similar approach [31]. We report the comparison for first- and second-order
statistics, and as we do not consider the third-order statistics we just report
the performance of [31] in this case. We can see that our formulation for first-
order statistics gives slightly better results than the approach in [31], which
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Table 5: A deeper comparison: for each component. We report the performance comparison
for each part of our formulation of the encoding method with the approach [31] (results
reported on the UCF50 dataset, best results are in bold, in italic are represented the results
for the third-order statistics of [31], as we do not use the third-order information, it is not
possible a direct comparison).

HOG HOF MBHx MBHy HMG

H-VLAD [31] first-order (=VLAD256) 0.717 0.812 0.789 0.802 0.809
SD-VLAD first-order 0.721 0.812 0.793 0.805 0.816

H-VLAD [31] second-order 0.724 0.809 0.774 0.782 0.786
SD-VLAD second-order 0.760 0.822 0.785 0.796 0.810

H-VLAD [31] third-order 0.606 0.709 0.708 0.705 0.700

Table 6: Comparison to IDT [49] in terms of accuracy and computational cost on the UCF50
dataset.

HOG HOF MBH HMG sec/video frames/sec

IDT [49] 0.826 0.851 0.889 - 50.5 3.9
dense 0.820 0.834 0.832 0.850 10.9 18.0

for their first order statistics represents the original VLAD formulation. This
slightly improvement is mainly due to the standard deviation integration from
Equation (5).

The main difference in performance is reflected for the second-order statis-
tics, where SD-VLAD outperforms [31] consistently for all five descriptors. This
consistent improvement for the second-order of VLAD-DV is mainly due to the
consideration of the global mean of the cluster instead of the local mean of the
descriptors when computing the standard deviation for the local descriptors.
Remarkably that the shape difference formulation of our SD-VLAD provides
only by itself a better representation than VLAD. For example, VLAD obtains
for HOG an accuracy of 0.717, while the shape difference for SD-VLAD (from
Equation (7)) obtains an accuracy of 0.760, and in this case the vector lengths
are equal and the computational costs are similar. Therefore, the shape dif-
ference for SD-VLAD can replace directly VLAD in many situations. After
this set of experiments we can take the conclusion that SD-VLAD is a proper
method for a trade-off between the efficiency and the performance, thus, for
the next experiments we will continue with FV as the choice when accuracy
is crucially important and with SD-VLAD for the trade-off.

5.5 Comparison with Improved Dense Trajectories

The Improved Dense Trajectories (IDT) [49] represents a state-of-the-art video
representation approach. We compare our descriptor extraction approach with
IDT in terms of accuracy and of computational efficiency. As in [49] where
there are reported the results for FV with 256 clusters, we perform the com-
parison with our dense approach using the same encoding method. As the code
in [49] provides four main descriptors (HOG, HOF, MBHx and MBHy), for
a fair comparison we compare its extraction time with dense extraction time
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Table 7: Trade-off between frame sampling rate and accuracy for the UCF50 dataset. We
keep video volumes from which descriptors are extracted the same for all sampling rates.
†Frames/second is measured in terms of the total number of frames of the original video,
not in terms of how many frames are actually processed during descriptor extraction.(frames/block

sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
HOG

SD-VLAD 0.772 0.768 0.770 0.775
FV 0.820 0.817 0.814 0.820
sec/video 2.67 1.54 1.15 0.78
frame/sec† 73.50 127.07 170.99 250.79

HOF

SD-VLAD 0.835 0.823 0.812 0.798
FV 0.834 0.820 0.817 0.799
sec/video 4.03 2.28 1.68 1.06
frame/sec† 48.61 86.04 116.27 184.73

MBHx

SD-VLAD 0.802 0.793 0.792 0.778
FV 0.816 0.806 0.797 0.779
sec/video 4.37 2.45 1.80 1.12
frame/sec† 44.80 80.03 108.96 174.60

MBHy

SD-VLAD 0.822 0.816 0.811 0.796
FV 0.824 0.819 0.814 0.794
sec/video 4.37 2.44 1.80 1.12
frame/sec† 44.84 80.27 108.67 174.37

HMG

SD-VLAD 0.834 0.835 0.835 0.822
FV 0.850 0.845 0.843 0.829
sec/video 2.73 1.59 1.19 0.80
frame/sec† 71.73 123.47 164.17 245.45

also for four descriptors: HOF, MBHx, MBHy and HMG. Notice that dense
HOG and HMG have similar computational time, so it is not relevant for time
measurement which one is selected. The comparison with IDT is presented
in Table 6. For the computational efficiency the dense approach outperforms
by a large margin IDT, being 4.6 times faster. The dense approach is able
to process a video with 18 frames per second while IDT can process only 3.9
frames per second. Even though [49] provides a fast code in C++, the Matlab
implementation for dense descriptors is considerably less demanding for the
computational cost due to several factors. First, IDT uses a more complicate
algorithm to extract the descriptors and furthermore, their approach improves
the accuracy by canceling the camera motion. For doing this it is necessary to
compute two times the optical flow, which makes the algorithm more demand-
ing for computational efficiency. Another reason is that the dense descriptors
are computed more efficiently, being able to reuse the blocks for many times
and without the need to compute any trajectories. Very interesting is the fact
that our HMG descriptor is able to compete even with HOF from IDT, with
almost similar performance of 0.85.
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Table 8: Trade-off between frame sampling rate and accuracy for the UCF101 dataset. We
keep video volumes from which descriptors are extracted the same for all sampling rates.(frames/block

sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
HOG

SD-VLAD 0.653 0.658 0.662 0.664
FV 0.708 0.719 0.721 0.722

HOF
SD-VLAD 0.740 0.725 0.719 0.697
FV 0.741 0.729 0.719 0.700

MBHx
SD-VLAD 0.709 0.703 0.696 0.681
FV 0.729 0.718 0.708 0.688

MBHy
SD-VLAD 0.728 0.723 0.717 0.701
FV 0.742 0.731 0.723 0.707

HMG
SD-VLAD 0.747 0.753 0.745 0.743
FV 0.771 0.780 0.771 0.757

Table 9: Trade-off between frame sampling rate and accuracy for the HMDB51 dataset. We
keep video volumes from which descriptors are extracted the same for all sampling rates.(frames/block

sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
HOG

SD-VLAD 0.367 0.380 0.378 0.380
FV 0.406 0.399 0.390 0.399

HOF
SD-VLAD 0.433 0.420 0.411 0.392
FV 0.433 0.424 0.408 0.388

MBHx
SD-VLAD 0.399 0.395 0.393 0.376
FV 0.407 0.400 0.397 0.371

MBHy
SD-VLAD 0.395 0.405 0.397 0.384
FV 0.405 0.402 0.401 0.377

HMG
SD-VLAD 0.418 0.417 0.408 0.409
FV 0.440 0.438 0.435 0.414

5.6 Frame subsampling

Subsequent video frames contain similar information. In this set of experiments
we investigate the impact on the accuracy results when frames are skipped,
with the goal of speeding up the feature extraction process. We evaluate when
skipping 2, 3 and 6 frames. The modality of frame subsampling is similar as
in [45]. For a fair comparison, the features describe the same video volume for
the process of subsampling frames. For instance, if we sample every 2 frames,
our baseline for the size of the block of 8 by 8 pixels by 6 frames is changing
to 8 by 8 by 3 frames; for skipping 3 frames we have only 8 by 8 pixels by 2
frames; and when sampling every 6 frames the block size became 8 by 8 pixels
by 1 frame.

The results for frame subsampling are presented in Table 7 for UCF50
dataset, in Table 8 for UCF101 and in Table 9 for HMDB51. In Table 7 we
present the computational cost for the descriptor extraction. We reported the
computational cost measurements only for UCF50 dataset in Table 7, as the
video resolution is similar for all tree datasets, thus, the numbers reported for
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Fig. 7: The pipeline for real-time video classification. This framework can process the video
at a speed of 39 frames/second and yields an accuracy of 0.845 on UCF50 dataset, 0.767 on
UCF101 and 0.470 on HMDB51.

the measurements for the frames per second are valid also for UCF101 and
HMDB51 datasets.

By subsampling frames the computational cost is significantly improved,
making the pipeline more efficient. HOG descriptor is not negatively affected
by skipping frames because this descriptor captures the appearance informa-
tion and subsequent video frames contain similar information. Therefore, for
HOG descriptor we can skip frames with a step of 6 without loosing accu-
racy for both FV and SD-VLAD, being able to process more than 250 frames
from the video per second. For the descriptors based on optical flow a frame
sampling rate of 3 gives a good trade-off, improving considerably the com-
putational cost. HMG with SD-VLAD can have a frame sampling rate of 6
without decreasing significantly the accuracy, and a frame sampling rate of 2
almost without affecting accuracy.

5.7 Real-time video classification

For a real-time video classification system we propose the framework illus-
trated in Fig. 7. We use dense descriptors due to their efficiency, additionally
we speed-up the pipeline by using a frame sampling rate (FSR) of 6 (thus,
frames/block=1) for HOG and HMG and a FSR of 3 (thus, frames/block=2)
for HOF, MBHx add MBHy. It is recommended that the FSR to be equal for
all descriptors based on optical flow for the reason of computing the optical
flow only once and use it for all of them. After we extract the descriptors, each
of them follows its separate path through the pipeline.

We initially normalize each descriptor using RootSIFT [1], then we apply
PCA to reduce their dimension by a factor of 2 (from 144 dimensions to 72).
Before encoding we apply a spatial pyramid representation (SP), dividing (in
3 rows) the descriptors based on their location in the frame, in bottom, middle
and top part of the frame. Then for each group of the descriptors we apply
our efficient encoding method, SD-VLAD, with 256 visual words. The output
vector of the encoding method is normalized using PNL2 with α = 0.5. In
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Fig. 8: The pipeline for accurate video classification. This framework yields an accuracy of
0.930 on UCF50 dataset, 0.881 on UCF101 and 0.610 on HMDB51, but can process only 3
frames/second.

Table 10: Comparison to the state-of-the-art.

UCF50 (Acc.) UCF101 (Acc.) HMDB51 (Acc.)

Kliper-Gross et al. [20] 0.727 Karpathy et al. [19] 0.654 Jain et al. [15] 0.521
Solmaz et al. [39] 0.737 Wang et al. [50] 0.859 Oneata et al. [29] 0.548
Reddy et al. [35] 0.769 Wang et al. [48] 0.860 Park et al. [30] 0.562
Uijlings et al. [44] 0.809 Peng et al. [31] 0.877 Wang et al. [49] 0.572
Uijlings et al. [45] 0.818 Peng et al. [32] 0.879 Sun et al. [42] 0.591
Wang et al. [47] 0.856 Simonyan et al. [36] 0.880 Simonyan et al. [36] 0.594
Wang et al. [49] 0.912 Sun et al. [42] 0.881 Peng et al. [31] 0.598
Wang et al. [48] 0.917 Park et al. [30] 0.891 Wang et al. [48] 0.601
Peng et al. [32] 0.923 Bilen et al. [3] 0.891 Bilen et al. [3] 0.652

HMG + iDT 0.930 HMG + iDT 0.881 HMG + iDT 0.610

the end we perform an early fusion by concatenating all five descriptors, then
we apply L2 normalization on the final representation for making unit length.
After we compute the distances we feed them to a linear SVM (C = 100) to
get the final result, the predicted class for a video.

The pipeline from Fig. 7 is able to obtain more than real-time processing
rate, being capable to run with 39 frames per second and to obtain an accuracy
of 0.845 for UCF50 dataset, 0.767 on UCF101 and 0.470 on HMDB51.

5.8 Comparison to state-of-the-art

When accuracy is crucially important for the application we recommend using
Fisher Vector (with 256 clusters) for feature encoding and combining our HMG
descriptor with IDT descriptors. The HMG descriptor is used in this case
without skipping frames. Our pipeline for accurate action recognition can be
visualized in Fig. 8. We extract all the descriptors of IDT (HOG, HOF, MBHx
and MBHy) with the default settings provided in [49]. We perform early fusion
between HMG and IDT by concatenating all features. For all features we
apply separately, before early fusion, PNL2 normalization with α = 0.1. This
combination improves the accuracy from 0.912 reported in [49] (for IDT) to
0.930 for UCF50 dataset, from 0.859 [50] to 0.881 for UCF101 and from 0.572
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[49] to 0.610 for HMDB51 . This significant improvement in performance shows
that our HMG descriptor brings complementary information for IDT and can
be used to boost the performance of the system. However, using IDT and FV
makes the pipeline more demanding for the computational cost, enabling to
process only around 3 frames per second, making it not suitable for real-time
applications.

Table 10 presents the performance comparison of our accurate pipeline
from Fig. 8 with state-of-the-art approaches. The proposed combination for
accuracy between HMG and IDT obtains state-of the art results on UCF50 and
competitive results on UCF101 and HMDB51. Our framework outperforms all
the methods based on hand-crafted features, including the recent work of [48],
which considers as encoding method the spatial FV [21] together with spatio-
temporal pyramid [24]. Our results are better than [48] which considers a
hybrid representation by combining two different representations. While the
approaches based on learned features (deep learning) such as [3, 30] obtain
state-of-the-art results, remarkably that our pipeline is able to outperform
many other well-known approaches based on deep learning such as [19, 36].

6 Conclusion

In this work we propose an efficient pipeline for action recognition. As two
critical factors for a powerful action recognition pipeline are represented by
descriptor extraction and descriptor encoding steps, we propose a new solution
for both of them. We introduce in this paper a new descriptor, Histograms of
Motion Gradients (HMG), that captures motion information without the need
of computing the optical flow, which obtains very competitive results while
achieving a low computational complexity. Regarding the descriptor encoding
we propose Shape Difference for VLAD (SD-VLAD). This approach captures
information regarding the distribution shape of the descriptors, providing the
best trade-off between computational cost and accuracy.

Based on our solutions for descriptor extraction and encoding, we propose
an accurate and a real-time video classification pipeline. We test our approach
on the challenging datasets: UCF50, UCF101 and HMDB51, being able to out-
perform well-know competitive approaches on this task. For the future work
we will focus on further improvement of computational efficiency by using
parallel computation. Furthermore, for new features we consider the idea of
learning a new representation by training a convolutional neural network with
the resulted motion frames obtained after temporal derivation, instead of us-
ing an optical flow method which is very expensive for the computational cost.
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