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ABSTRACT

The current state-of-the-art in Video Classification is based
on Bag-of-Words using local visual descriptors. Most com-
monly these are Histogram of Oriented Gradient (HOG) and
Histogram of Optical Flow (HOF) descriptors. While such
system is very powerful for classification, it is also com-
putationally expensive. This paper addresses the problem
of computational efficiency. Specifically: (1) We propose
several speed-ups for densely sampled HOG and HOF de-
scriptors and release Matlab code. (2) We investigate the
trade-off between accuracy and computational efficiency of
descriptors in terms of frame sampling rate and type of Op-
tical Flow method. (3) We investigate the trade-off between
accuracy and computational efficiency for the video repre-
sentation, using either a k-means or hierarchical k-means
based visual vocabulary, a Random Forest based vocabulary
or the Fisher kernel.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Miscella-
neous

Keywords

Video Classification, HOG, HOF, Computational Efficiency

1. INTRODUCTION
The Bag-of-Words method [7, 31] has been succesfully

adapted from the domain of images to the domain of video
(e.g. [21, 10, 18, 29, 30, 38]). Succesful applications range
from Human Action Recognition [21, 20, 28] to Event De-
tection [32] and Concept Classification [33, 32]. However,
analysing video is even more expensive than analysing im-
ages. Hence in order to be able to deal with the enormous,
growing amount of digitalized video it is important to have
computationally efficient systems.
In this paper we take a powerful, commonly used Bag-of-

Words pipeline for video classification and investigate how
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we can make it more computationally efficient. The gen-
eral pipeline is visualised in Figure 1. It has been shown
that Bag-of-Words works better using densely sampled de-
scriptors rather than descriptors taken at key-points, both in
images [16] and in video [39]. Therefore we focus on densely
sampled descriptors. As type of descriptors, we focus on
the standard ones, which are based on local 3D volumes of
Histograms of Oriented Gradients (HOG) and Histograms
of Optical Flow (HOF). For the final representation of the
video we use Random Forest and the Fisher Kernel by de-
fault. Starting from this pipeline, this paper makes the fol-
lowing contributions:

• We exploit the nature of densely sampled descriptors in
order to speed up their computation. HOG and HOF
descriptors are created from subvolumes. These sub-
volumes can be shared by different descriptors similar
to what was done in [36]. In this paper we generalize
their idea of reusing subregions to 3 dimensions.

• Videos consist of many frames, making them compu-
tational expensive to analyse. However, subsequent
frames also largely carry the same information. In
this paper we evaluate the trade-off between accuracy
and computational efficiency when subsampling video
frames.

• Calculating optical flow is generally expensive and takes
up much of the total HOF descriptor extraction time.
But for optical flow there is also a trade-off between
computational efficiency and accuracy. Whereas accu-
racy for optical flow is mostly measured on optical flow
benchmarks such as [2, 4], in this paper we investigate
this trade-off directly on our task of interest: video
classification. Specifically, we compare the optical flow
methods of Lukas-Kanade [24], Horn-Schunk [14], and
Farnebäck [12].

• A k-means visual vocabulary is the most commonly
used Bag-of-Words technique. However, it has been
shown in [26, 36] that Random Forests [3, 13] are a
computationally efficient alternative. On the other
hand, the Fisher kernel [27] has been shown to be more
accurate. This paper compares the accuracy/efficiency
trade-off in the context of video classification for all
three methods.

Matlab code for HOG and HOF descriptors is available1.

1http://homepages.inf.ed.ac.uk/juijling/index.php#page=software

http://homepages.inf.ed.ac.uk/juijling/index.php#page=software


Figure 1: General Framework for Video Classification using a Bag-of-Words pipeline. The methods evaluated in this paper
are instantiated in this diagram. For both HOG and HOF descriptors we evaluate several variations.

2. RELATED WORK
The most used local spatio-temporal descriptors are mod-

elled after SIFT [23]: each local video volume is divided into
blocks, for each block one aggregates responses (either ori-
ented gradients or optical flow), and the final descriptor is
a concatenation of the aggregated responses of several adja-
cent blocks. Both Dalal et al. [9] and Laptev et al. [21] pro-
posed to aggregate 2D Oriented Gradient Responses (HOG)
and Optical Flow responses (HOF). Additionally. Dalal et
al. [9] also proposed to calculate changes of optical flow,
or Motion Boundary Histograms. Both Scovanner et al. [30]
and Kläser et al. [18] proposed to measure oriented gradients
also in the temporal dimension, resulting in 3-dimensional
gradient responses. Everts et al. [11] extended [18] to include
colour channels. As Wang et al. [39] found little evidence
that the 3D responses of [18] are better than HOG, in this
evaluation paper we implemented and evaluated the descrip-
tors which are most widely used: HOG and HOF.
Wang et al. [39] evaluated several interest point selec-

tion methods and several spatio-temporal descriptors. They
found that dense sampling methods generally outperform
interest points, especially on more difficult datasets. As this
result was earlier found in image analysis [16], this paper
focuses on dense sampling for videos. In [39] the evaluation
was on accuracy only. In contrast, this paper focuses on the
trade-off between computational efficiency and accuracy.
Recently, Wang et al. [38] proposed to use dense trajecto-

ries. In their method, the local video volume moves spatially
through time; it tries to stay on the same part of the ob-
ject. Additionally, they use changes in optical flow rather
than the optical flow itself. They show good improvements
over normal HOG and HOF descriptors. Nevertheless, com-
bining their dense trajectory descriptors with both normal
HOG and HOF descriptors still gives significant improve-
ments over dense trajectories alone [17, 38]. In this paper
we focus on HOG and HOF. Note that we evaluate the ac-
curacy/efficiency trade-off for several optical flow methods
which may be of interest also when using dense trajectories.
The work of Uijlings et al. [36] proposes several meth-

ods to speed up the Bag-of-Words classification pipeline for
image classification and provides a detailed evaluation on
the trade-off between computational efficiency and classifi-
cation accuracy. In this paper we perform such evaluation
on video classification. Inspired by their work we propose ac-
celerated densely extracted HOG and HOF descriptors and
provide an implementation. Additionally, we evaluate vari-
ous video-specific aspects such as frame sampling rate and
the choice of optical flow method.
The Fisher Kernel [27] has proven to consistently outper-

form standard vector quantization methods such as k-means
in the context of Bag-of-Words. In this paper we evaluate
the accuracy/efficiency trade-off using the Fisher Kernel in
the context of video classification.

3. BAG-OF-WORDS FOR VIDEO
In this section we explain in detail the pipeline that we use.

We mostly use off-the-shelf yet state-of-the-art components
to construct our Bag-of-Words pipeline, which is necessary
for a good evaluation paper. Additionally, we explain how
to create a fast implementation of densely sampled HOG
and HOF descriptors. We make the HOG/HOF descriptor
code publicly available.

3.1 Descriptor Extraction
In this paper we compare HOG and HOF descriptors using

two implementations. The first is the fast implementation
which we created ourselves. The second is the widely used
available code of [21]. Both methods work on grey-values
only.

3.1.1 Fast Dense HOG/HOF Descriptors

For both HOG and HOF descriptors, there are several
steps. First one needs to calculate either gradient magnitude
responses in horizontal and vertical directions (for HOG), or
optical flow displacement vectors in horizontal and vertical
directions (for HOF). Both result in a 2-dimensional vector
field per frame. Then for each response the magnitude is
quantized in o orientations, usually o = 8. Afterwards, one
needs to aggregate these responses over blocks of pixels in
both spatial and temporal directions. The next step is to
concatenate responses of several adjacent pixel blocks. Fi-
nally, descriptors have to be normalized and sometimes PCA
is performed to reduce their dimensionality, often leading to
computational benefits or improved accuracy.

To calculate gradient magnitude responses we use HAAR-
features. These are faster to compute than Gaussian Deriva-
tives and have proven to work better for HOG [8]. Quan-
tization in o orientations is done by dividing each response
magnitude linearly over two adjacent orientation bins.

We use the classical Horn-Schunk [14] method for opti-
cal flow responses as a default. We use the version imple-
mented by the Matlab Computer Vision System Toolbox.
Additionally, we evaluate two other optical flow methods:
Lucas-Kanade [24], also using from the Matlab Computer
Vision System Toolbox, and the method of Färneback [12],
using OpenCV2 with the mexopencv interface3.
2http://opencv.org
3https://github.com/kyamagu/mexopencv

http://opencv.org
https://github.com/kyamagu/mexopencv


Both HOG and HOF descriptors are created out of blocks.
By choosing the sampling rate identically to the size of a
single block, one can reuse these blocks. Figure 2 shows
an example how a video volume can be divided into blocks.
Once responses per block are computed, descriptors can be
formed by concatenating adjacent blocks. In this paper we
use descriptors of 3 by 3 blocks in the spatial domain and 2
blocks in the temporal domain, as shown in blue in Figure 2,
but these parameters can be easily changed. Hence each
block is reused 18 times (except for the blocks on the borders
of the video volume).

Figure 2: Blocks in a video volume can be reused for de-
scriptor extraction. In our paper descriptors consist of 3 by
3 blocks in space and 2 blocks in time, shown in blue.

To aggregate responses over space we use the Matlab-
friendly method proposed by [36]: Let R be anN×M matrix
containing responses in a single orientation (be it gradient
magnitude or optical flow magniture). Let BN and BM be
the number of elementary blocks from which HOG/HOF fea-
tures are composed. Now it is possible to construct (sparse)
matrices O and P of respectively BN ×N and M×BM such
that ORP = A, where A is a BN × BM matrix containing
the aggregated responses for each block. O and P resem-
ble diagonal matrices but are rectangular and the filled in
elements follow the ’diagonal’ of the rectangle instead of po-
sitions (i, i). By proper instantiation of these matrices we
perform interpolation between blocks, which provides the
descriptors some translation invariance. For integration over
time we add the responses of the frames belonging to a sin-
gle block. For more details we refer the reader to the work
of [36].
In this paper, we extract descriptors on a single scale

where blocks consist of 8 by 8 pixels by 6 frames, which
at the same time is our dense sampling rate. Descriptors
consist of 3 by 3 by 2 blocks. Both for HOG and HOF
the magnitude responses are divided into 8 orientations, re-
sulting in 144 dimensional descriptors. PCA is performed
to reduce the dimensionality by 50% resulting in 72 dimen-
sional vectors. Afterwards, normalization is performed by
the L1-norm followed by the square root, which effectively
means that Euclidean distances between descriptors in fact
reflect the often superior Hellinger distance [1].

3.1.2 Existing HOG/HOF Descriptors

We use the existing implementation of Laptev et al. [21].
We use the default parameters as suggested by the authors,
which compared to our descriptors are as follows: They per-
form a dense sampling at multiple scales. At the finest scale,
blocks are 12 by 12 pixels by 6 frames, sampling rate is ev-
ery 16 pixels by every 6 frames. They consider 8 spatial

scales and 2 temporal scales for a total of 16 scales, where
each scale increases the descriptor size by a factor of

√
2. In

the end, they generate around 33% less descriptors than our
single scale dense sampling method.

Unlike our descriptor extraction, the implementation of [21]
uses 4 orientations for HOG and 5 orientations for HOF, re-
sulting in respectively 72 and 90 dimensional descriptors.

3.2 Visual Word Assignment
We use four different ways of creating a single feature

representation of a set of descriptors extracted from a single
video: k-means, hierarchical k-means, Random Forests, and
the Fisher Vector [27].

For both k-means and hierarchical k-means we use the im-
plementation made available by VLFeat [37]. In both cases
we use 4096 visual words. For hierarchical k-means, we learn
a hierarchical tree of depth 2 with 64 branches per node of
the tree (preliminary experiments showed a large decrease
in accuracy when using a higher depth with fewer branches,
but only marginal improvements in computational efficiency,
data not shown). We normalize the features using the square
root, which discounts frequently occurring visual words, fol-
lowed by L1-normalization.

Random Forests are binary decision trees which are learned
in a supervised way by randomly picking several descriptor
dimensions at each node with several random thresholds and
choose the one with the highest Entropy Gain. We follow
the recommendations of [36], using 4 binary decision trees
of depth 10, resulting in 4096 visual words. The resulting
vector is normalized by taking the square root followed by
L1.

The Fisher Vector [15] as used in [27] encodes a set of
descriptors D with respect to a Gaussian Mixture Model
(GMM) which is trained to be a generative model of these
descriptors. Specifically, the set of descriptors is represented
as the gradient with respect to the parameters of the GMM.
This can be intuitively explained in terms of the EM algo-
rithm for GMMs: Let Gλ be the learned GMM with param-
eters λ. Now use the E-step to assign the set of descriptors
D to Gλ. Then the M-step yields a vector F with adjust-
ments on how λ should be updated to fit the data (i.e. how
the GMM clusters should be adjusted). This vector F is ex-
actly the Fisher Kernel representation. We follow [27] and
normalize the vector using a square root of the absolute val-
ues and afterwards keep the original sign ((sign(fi))

√

|fi|),
followed by L2. In this paper we use two common cluster
sizes for the GMM: 64 and 256 clusters [27]. Without a
spatial pyramid [22], for our 72 dimensional HOG/HOF fea-
tures this will yield vectors of 9,216 and 36,864 dimensions
respectively. While not comparable with the dimensionality
of other methods, Fisher Vectors allow for linear Support
Vector Machines rather than Histogram Intersection or χ2-
kernels. Hence efficiency-wise, the simpler classifiers will
compensate for the larger feature vectors.

We use the Spatial Pyramid [22] in all our experiments.
Specifically, we divide each video volume into the whole
video, and into three horizontal parts which intuitively rough-
ly corresponds to a ground, object, and sky division (in out-
door scenes).

3.3 Classification
For classification we use Support Vector Machines which

are powerful and widely used in a Bag-of-Words context



(e.g. [7, 22, 36, 37]). For k-means, hierarchical k-means,
and Random Forests, we use SVMs with the Histogram In-
tersection kernel, using the fast classification method as pro-
posed by [25]. For the Fisher Vector, we use linear SVMs.
For both types of SVMs, we make use of the publicly avail-
able LIBSVM library [5] and the fast Histogram Intersection
classification of [25].

4. EXPERIMENTS
Our baseline consists of densely sampled HOG and HOF

descriptors, both consisting of blocks of 8 by 8 pixels by
6 frames. For HOF, optical flow is calculated using Horn-
Schunk. Gradient and flow magnitude responses are quan-
tized in 8 bins. The final descriptors consist of 3 by 3 by
2 blocks. PCA always reduces dimensionality of descriptors
by 50%. We use a spatial pyramid division of 1× 1× 1 and
1×3×1 [22] (we have no temporal division). Normalisation
after word assignment is done by either taking the square
root while keeping the sign followed by L2 for the Fisher
Kernel, or by the square root plus L1 for all other methods.
We use SVMs for classification, with either a linear kernel
for the Fisher Vectors or histogram intersection kernel for
all other visual word assignment methods.
Starting from our baseline we perform four experiments:

(1) We compare four different visual word assignment meth-
ods: k-means, hierarchical k-means, Random Forests, and
the Fisher Kernel. (2) We compare our densely extracted de-
scriptors with the descriptors provided by Laptev et al. [21].
(3) We evaluate the efficiency/accuracy trade-off by sub-
sampling video frames for the descriptor extraction process.
(4) For HOF-descriptors, we compare three different opti-
cal flow implementations: Horn-Schunk, Lukas-Kanade, and
Farnebäck [12].
Based on our experiments we provide two recommenda-

tions, one for real-time video classification and one for accu-
rate video classification. Finally we give a comparison with
the state-of-the-art.

4.1 Dataset
We perform all experiments on the UCF50 Human Ac-

tion Recognition dataset [28]. This dataset contains 6600
realistic videos taken from Youtube and as such has large
variations in camera motion, object appearance and pose,
illumination conditions, scale, etc. The 50 human action
categories are mutually exclusive and include actions such
as biking, diving, drumming, and fencing. The frames of
the videos are 320 by 240 pixels. The video clips are rela-
tively short with a length that varies around 70-200 frames.
The dataset is divided in 25 predefined groups. Following
the standard procedure we perform a leave-one-group-out
cross-validation and report the average classification accu-
racy over all 25 folds. Optimization of the SVM slack pa-
rameter is done for every class for every fold on the training
set (containing 24 groups).

4.2 Visual Word Assignment
In this experiment we compare the following visual word

assignment methods: k-means, hierarchical k-means, Ran-
dom Forests, and the Fisher Kernel. K-means, hierarchical
k-means and Random Forests are similar in the sense that
the final vector represents visual word counts. To compare
these methods we ensure that all have 4096 visual words.
For k-means this means performing clustering with k=4096.

For hierarchical k-means we use a hierarchy of depth 2 with
64 branches at each node. The Random Forest consists of
4 trees of depth 10. We choose to base our Fisher Vectors
on standard sizes for the number of clusters: 64 and 256
clusters [27, 6]. While Fisher Vectors are of higher dimen-
sionality, the vectors work with linear classifiers. This means
that Fisher Vectors are best compared with the other visual
word assignment methods in terms of the accuracy/efficiency
trade-off.

The accuracy and computational efficiency for the various
word assignment methods for both our HOG and HOF fea-
tures are presented in Figure 3 and Table 1. The first thing
to notice is that the Fisher Kernel with 256 clusters has the
best accuracy of 0.765 for HOG and 0.795 for HOF, while
taking about 4 seconds per video (per descriptor type). K-
means has also good accuracy at 0.726 for HOG and 0.791
for HOF. However, the computational time is at 13 seconds
per video more than three times slower. This means that
the Fisher Kernel (with 256 clusters) for video classifica-
tion is superior in both accuracy and efficiency compared
to k-means. For computational efficiency, the Random For-
est is by far the fastest and takes 0.11 seconds per video.
The hierarchical k-means (hk-means) is four times slower at
0.47 seconds per video, and performs slightly worse on HOG
(0.718 hk-means vs. 0.729 RF) but significantly better on
HOF (0.780 hk-means vs. 0.732 RF).

In terms of classification time per video, we measure 0.017
seconds per video when using the fast Histogram Intersec-
tion based classification for SVMs [25] for k-means, hk-means,
and Random Forests. We measure 0.001 seconds per video
for the linear classifier used on the Fisher Kernel represen-
tation with 256 clusters. This means that the classification
time is negligible compared to the word assignment time and
is of little concern for video classification.

For the remainder of this paper, we choose to perform
our evaluation on two word assignment methods: the Fisher
Kernel, which yields the most accurate results, and the Ran-
dom Forest, which is the fastest.

4.3 Comparison with Laptev et al.
In this experiment we compare with the publicly avail-

able code from [21] with our implementation. We compare
only to the dense sampling option as [39] has already proven
that dense sampling outperforms the use of space-time in-
terest points. Results are presented in Figure 4 and 5 and
in Table 2.

The results show that for all settings there is a signifi-
cant difference in accuracy between the dense implementa-
tion of [21] and our method. For the Fisher Kernel, HOG
descriptors yield 0.670 accuracy for [21] and 0.765 accuracy
for our implementation and HOF descriptors yield 0.725 ac-
curacy for [21] and 0.795 accuracy for our implementation.
These are accuracy increases of 9% and 7% respectively.
Similar differences are obtained using Random Forests. Part
of the difference can be explained by the fact that we sam-
ple differently: because we reuse blocks of the descriptors,
our sampling rate is defined by the size of a single block.
This means we sample descriptors every 8 pixels and every
6 frames at a single scale, whereas [21] samples every 16 pix-
els and every 6 frames at 10 increasingly course scales. For
our method this yields around 150 descriptors per frame or
around 29,000 descriptors per video whereas [21] generates
around 90 descriptors per frame or around 17,500 descriptors
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Figure 3: Accuracy/Efficiency trade-off for various word as-
signment methods.

k-means hk-means RF FK 64 FK 256
HOG Acc 0.726 0.718 0.729 0.746 0.765
HOF Acc 0.791 0.780 0.732 0.779 0.795

sec/video 13.08 0.47 0.11 1.67 3.99
frame/sec 15 415 1734 118 49

Table 1: Trade-off accuracy/efficiency for the following visual
word assignment methods: k-means, hierarchical k-means
(hk-means), Random Forest (RF), Fisher Kernel with 64 and
256 clusters (FK 64 and FK 256). Assignment time for HOG
and HOF is the same.
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Figure 4: Accuracy comparison between [21] and our
HOG/HOF descriptors
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Figure 5: Computational Efficiency comparison be-
tween [21] and our HOG/HOF descriptors

RF FK 256 efficiency
HOG HOF HOG HOF sec/vid frame/sec

[21] 0.619 0.611 0.670 0.725 132 1.5
ours 0.729 0.732 0.765 0.795 14 14

Table 2: Comparing the dense HOG/HOF implementa-
tion of [21] and ours. The descriptor extraction time is
measured for extracting both HOG and HOF features, as
the binary provided by [21] does always both. Descriptor
extraction time is independent of the visual word assign-
ment method (RF or FK 256).

per video, which means we generate 66% more descriptors.
While this may seem unfair towards [21], in this paper we
are interested in the trade-off between accuracy and com-
putational efficiency, which makes the exact locations from
where descriptors are sampled irrelevant.
In terms of computational efficiency our method is more

than 9 times faster: their method takes 132 seconds per
video while our method takes 14 seconds per video. Our
method is faster because we reuse blocks in our dense de-
scriptor extraction method. Note that because the method
of [21] samples fewer descriptors, visual word assignment
time is faster. But by using [21] the overall computation
time will be completely dominated by descriptor extraction.
To conclude, our implementation is significantly faster and

significantly more accurate than the version of [21].

4.4 Subsampling Video Frames
In video, subsequent video frames largely contain the same

information. As the time for descriptor extraction is the
largest bottleneck in video classification, we investigate how
the accuracy behaves if we subsample video frames and hence
speed-up the descriptor extraction process.
For a fair comparison, we want the descriptors always to

describe the same video volume. In our baseline, each de-
scriptor block consists of 8 by 8 pixels by 6 frames. To sub-
sample in such a way that every block describes the same
video volume regardless of the sampling rate, we do the fol-

lowing: if we sample every 2 frames, we aggregate responses
over 3 frames (i.e. of frame 2, 4 and 6). When sampling
every 3 frames, we aggregate responses over 2 frames (i.e.
frame 2 and 5), and when sampling every 6 frames in which
we only consider a single frame per descriptor block (i.e.
frame 3). Results are presented in Figure 6 and Table 3.

For HOG descriptors, subsampling video frames has sur-
prisingly little effect on the accuracy, both for the Random
Forest and the Fisher Kernel: using the Fisher Kernel, a
sampling rate of 1 yields an accuracy of 0.765 while a sam-
pling rate of 6 yields 0.762 accuracy. The result of the Ran-
dom Forest similarly goes slightly down from 0.729 to 0.720.
In terms of computational efficiency, a significant speed-up
is achieved: sampling every 6 frames instead of every frame
gives a speed-up from 5.7 seconds per video to 1.8 seconds
per video.

For HOF descriptors, subsampling has a bigger impact:
For the Fisher kernel accuracy is 0.795 using a sampling
rate of 1, maintains a respectable 0.791 accuracy at a sub-
sampling rate of 2 frames, while dropping significantly to
0.763 for sampling every 6 frames. Accuracy with a Ran-
dom Forest is less affected and drops from 0.732 at sample
rate of 1 to 0.722 at sample rate 6. Again, a good speed-up is
obtained by subsampling. While descriptor extraction takes
8.3 seconds for sampling every frame, a sampling rate of 2
yields a factor 1.72 speed-up while sampling every 6 frames
yields a factor 3.6 speed-up.
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Figure 6: Trade-off accuracy/efficiency when varying
sampling rate. F stands for frames per block and is di-
rectly related to sampling rate.

HOG
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frames/block
sample rate
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6
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1
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)

RF 0.729 0.713 0.730 0.720
FK 256 0.765 0.759 0.760 0.762
sec/vid 5.7 3.3 2.5 1.8
frame/sec† 37.6 60.0 78.7 110.0

HOF

(

frames/block
sample rate

) (

6
1

) (

3
2

) (

2
3

) (

1
6

)

RF 0.732 0.724 0.714 0.722
FK 256 0.795 0.791 0.784 0.763
sec/vid 8.3 4.8 3.6 2.3
frame/sec† 23.5 41.1 54.9 83.4

Table 3: Trade-off between frame sampling rate and
accuracy. We keep video volumes from which descip-
tors are extracted the same for all sampling rates.
†Frames/second is measured in terms of the total number
of frames of the video, not in terms of how many frames
are actually processed during descriptor extraction.
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Figure 7: Classification Accuracy for various optical flow
methods.
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Figure 8: Computational efficiency for various optical
flow methods

Horn-Schunk Lucas-Kanade Färneback
RF 0.732 0.711 0.624
FK 256 0.795 0.747 0.641

sec/video 8.3 6.5 22.8
frame/sec 24 30 9

Table 4: Comparison of different optical flow methods.
Horn-Schunk and Lucas-Kanade use the Matlab imple-
mentation. The dense Färneback method is taken from
OpenCV.

To conclude, HOG descriptors can be sampled every 6
frames with negligible loss of accuracy yielding a speed-up
of a factor 3.2. HOF descriptors can be sampled every 2
frames with negligible loss of accuracy yielding a speed-up
of 1.72. When speed is more important than accuracy, HOF
descriptors can also be sampled every 6 frames leading to
1-3% accuracy loss while gaining a significant speed-up of a
factor 3.6.

4.5 Choice of Optical Flow
The HOF descriptors are much more expensive to extract

than the HOG descriptors. This is because calculating the
optical flow is computationally expensive. Additionally, not
much research has been done on how different methods of
optical flow affect HOF descriptors. Therefore in this ex-
periment we evaluate three available optical flow implemen-
tations to investigate both their computational efficiency
and accuracy. In particular, we compare Farnebäck [12]
from OpenCV using the mexopencv interface, and Lucas-
Kanade [24] and Horn-Schunk [14] from the Matlab Com-
puter Vision Systems Toolbox. Results are presented in Fig-

ure 7, Figure 8 and Table 4.
As can be seen, for both the Random Forest and the

Fisher Kernel the optical flow methods have the same rank-
ing in terms of accuracy. For the Fisher Kernel, Horn-
Schunk performs best at an accuracy of 0.795, followed by
Lucas-Kanade at an accuracy of 0.747, while the method
of Farnebäck performs relatively poorly with an accuracy of
0.641. These results show that the optical flow method is
crucial to the performance of the HOF descriptor: the choice
of optical flow affects the results by up to 15%(!).

In terms of computational efficiency, Farnebäck is the slow-
est at 9 frames per second, followed by Horn-Schunk at 24
frames per second, while the Lucas-Kanade implementation
is best at 30 frames per second.

To conclude, the choice of optical flow method drastically
influences the power of the resulting HOF descriptor. Con-
sidering the many recent advances in optical flow (see Sun et
al. [35] for a good overview), it would be worthwhile to eval-
uate a larger variety of optical flow methods in the context of
video classification. In this paper, the Horn-Schunk method
has superior performance. While the Lucas-Kanade method



Method Accuracy
Wang et al. [38] (2013) 0.856%
This paper 0.809%
Reddy et al. [28] (2012) 0.769%
Solmaz et al. [34] (2012) 0.737%
Everst et al. [11] (2013) 0.729%
Kliper-Gross et al. [19] (2012) 0.727%

Table 5: Comparison with the State-of-the-Art.

is faster, its accuracy/efficiency trade-off is poor: If compu-
tational efficiency is important, instead of using the Lucas-
Kanade method which yields 0.747 accuracy at 30 frames
per second, we recommend using Horn-Schunk with a frame
sampling rate of 2, yielding 0.791 accuracy at 41 frames per
second (Table 3).

4.6 Recommendations for Practitioners
Based on the results of the previous experiments, we can

now give several recommendations when accuracy of compu-
tational efficiency is preferred. For calculating Optical Flow,
Section 4.5 showed that the Matlab implementation of Horn-
Schunk is always the method of choice. In terms of frame
sampling rate, for HOG descriptors we always recommend a
sampling rate of every 6 frames. For HOF descriptor, if one
wants accuracy we recommend a sampling rate of every 2
frames and if one wants computational efficiency we recom-
mend a sampling rate of 6. For word assignment method,
the Fisher Kernel is the method of choice for accuracy. For
computational efficiency there are two candidates: hierar-
chical k-means and the Random Forest. Observe first that
the descriptor extraction time is the most costly phase of the
pipeline: Extracting HOF descriptors with a sampling rate
of 6 frames takes 2.3 seconds per video to compute. And
while the Random Forest is four times faster than hierar-
chical k-means, the difference is only 0.36 seconds, which is
very small compared to the descriptor extraction phase. Fur-
thermore, Table 1 showed a significant drop of accuracy from
0.780 for hierarchical k-means to 0.732 for Random Forests.
Therefore we recommend using hierarchical k-means for a
fast video classification pipeline.
We found that late fusion of the classifier outputs gave

slightly better results than early fusion of the descriptors
(i.e. concatenating HOG and HOF). Hence in our recom-
mendations we perform a late fusion with equal weights.
The final recommended pipelines are visualised in Fig-

ures 9 and 10. Both combine HOG and HOF descriptors.
Our recommended pipeline for accuracy is able to process 13
frames per second (for video frames of 320 by 240 pixels) at
an accuracy of 0.809 on UCF50. Our recommended pipeline
for computational efficiency processes 39 frames per second
at a respectable accuracy of 0.790.

4.7 Comparison with State-of-the-Art
In this section we compare our descriptors to the state-of-

the-art. Results of several recent works are given in Table 5.
This comparison is done in terms of accuracy only, as most
compared methods evaluate accuracy only.
As can be seen, the method of [38] yields the best re-

sults. This method is a combination of Dense Trajectories
and STIP features [21]. As our results are better than [21],
we expect that a combination of dense trajectories with

our method would increase results further. In general, our
method yields good performance compared to many recently
proposed methods, which shows that we provide a strong
implementation of densely sampled HOG and HOF descrip-
tors.

5. CONCLUSION
This paper presented an evaluation of the trade-off be-

tween computational efficiency and accuracy for video clas-
sification using a Bag-of-Words pipeline with HOG and HOF
descriptors. Our first contribution is a strong and fast Mat-
lab implementation of densely sampled HOG and HOF de-
scriptors, which we make publicly available.

In terms of visual word assignment, the most accurate
method is the Fisher Kernel. Hierarchical k-means is more
than 8 times faster while yielding an accuracy loss of less
than 2% and is the method of choice for a fast video clas-
sification pipeline. HOG descriptors can be subsampled ev-
ery 6 frames with a negligible loss in accuracy, while being
3 times faster. HOF descriptors can be subsampled every
2 frames with negligible loss in accuracy, being 1.7 times
faster. When speed is essential, HOF descriptors may be
subsampled every 6 frames.

For the HOF descriptors, we showed that the choice of
optical flow algorithm has a large impact on the final per-
formance. The difference between the best method, Horn-
Schunk, and the second best method, Lucas-Kanade, is al-
ready 5%, while the difference with Färneback is a full 15%.
In the near future we plan to investigate several more optical
flow methods on a larger variety of datasets.

Compared to the state-of-the-art, the Dense Trajectory
method of [38] obtains better results. Nevertheless, the huge
difference for the choice of optical flow methods suggest this
would also influence dense trajectories. Furthermore, Dense
Trajectories still benefit from a combination with normal
HOG and HOF desciptors [17, 38]. Finally, comparisons
with other recent methods on UCF50 shows that we provide
a strong implementation of dense HOG and HOF descriptors
to the community.
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