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Abstract

We introduce Spatio-Temporal Vector of Locally Max
Pooled Features (ST-VLMPF), a super vector-based encod-
ing method specifically designed for local deep features en-
coding. The proposed method addresses an important prob-
lem of video understanding: how to build a video representa-
tion that incorporates the CNN features over the entire video.
Feature assignment is carried out at two levels, by using the
similarity and spatio-temporal information. For each assign-
ment we build a specific encoding, focused on the nature of
deep features, with the goal to capture the highest feature re-
sponses from the highest neuron activation of the network.
Our ST-VLMPF clearly provides a more reliable video rep-
resentation than some of the most widely used and power-
ful encoding approaches (Improved Fisher Vectors and Vec-
tor of Locally Aggregated Descriptors), while maintaining
a low computational complexity. We conduct experiments
on three action recognition datasets: HMDB51, UCF50 and
UCF101. Our pipeline obtains state-of-the-art results.

1. Introduction

Action recognition is still a very challenging and high
computationally demanding task in computer vision, receiv-
ing a sustained attention from the research community due
to its huge pool of potential applications. Its pipeline can be
broken down into three main steps: feature extraction, encod-
ing and classification. While for the classification part, the
existing techniques are more mature, for feature extraction
and encoding there is still a significant room for improve-
ment. There are two main directions for feature extraction:
hand-crafted and learned features (deep features). For hand-
crafted category the most popular descriptors are represented
by Histogram of Oriented Gradients (HOG) [5, 20], His-
togram of Optical Flow (HOF) [20] and Motion Boundary
Histograms (MBH) [6]. These descriptors are extracted from
a video using different approaches to establish the region of
extraction, such as at interest points [19], using a dense sam-
pling [42, 47], along motion trajectories [38, 43, 45]. Re-
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Figure 1: The ST-VLMPF framework for deep features encoding.

cently, the features learned with a deep neural network repre-
sent a breakthrough in research, obtaining impressive results
[3, 17, 25, 33, 34, 39, 40, 49, 52].

The feature encoding is one of the crucial steps for the
system performance. Super vector-based encoding methods
represent one of the most powerful solutions to build the fi-
nal representation that servers as an input for a classifier. Im-
proved Fisher Vectors (iFV) [29] and Vector of Locally Ag-
gregated Descriptors (VLAD) [15] proved their superiority
over other encoding methods in many works and are pre-
sented as state-of-the-art approaches for the encoding step
[22, 27, 41, 42, 45]. One of the shortcomings for current stan-
dard encodings is the lack of considering the spatio-temporal
information, which is crucially important, especially when
dealing with videos. These encoding approaches are built
around hand-crafted features. However, a new trend is using
deep features, as they obtain promising results over the tradi-
tional hand-crafted features. Many recent works apply these
encoding methods also on deep features. Nevertheless, there
is not yet a mature pipeline established for using these new
features as their nature and behavior are implicitly different
from the hand-designed category.

Deep features are learned throughout a deep neural net-
work, providing high discriminative power on the upper lay-
ers of the network, with high level information such as ob-
jects, while hand-crafted features are manually designed and
usually contain low-level information such as edges. Deep
features are characterized also by their high sparsity. For in-
stance, in [34, 49] the feature maps extracted from the upper
layers of the networks (which are often used in the works
as features), can contain a sparsity level of more than 90%,



while for hand-crafted features, as in [42, 47], the level of
sparsity is negligible. Most of the current encoding meth-
ods, such as iFV and VLAD, are built to capture high sta-
tistical information to improve the performance. In gen-
eral, for hand-crafted features, iFV works better than VLAD
[27, 42] due to the fact that iFV captures first- and second-
order statistics, while VLAD is based only on first order.
While for hand-crafted features using more statistical infor-
mation improves significantly the performance, considering
the difference between them, for deep features using high-
order statistics may not guarantee the performance improve-
ment. As a matter of fact, in many recent works, as in [50],
VLAD encoding is underlined as outperforming iFV, when
using deep features. This aspect is also verified in our exper-
iments, where iFV does not guarantee a better performance
than VLAD. This shows that a simpler encoding method can
perform better than an approach which rely on high order
information. This is a completely opposite behavior in com-
parison with hand-crafted features. Considering all of these,
we argue that a new encoding method, specifically designed
for deep features, can provide better results.

With the current high availability of off-the-shelf pre-
trained neural networks, many researchers use them only as
feature extraction tools, as re-training or fine tuning is more
demanding in many aspects. Thus, it is necessary for a per-
formant deep features encoding approach. One of the major
shortcomings of the current ConvNets-based approaches is
represented by the fact that the networks take into account
one or several staked frames (for instance, 10-staked optical
flow fields [33, 49]). Each sampled input for the network is
assigned to the overall video label from which it belongs to.
The issue is that if we consider such a short number of frames
as input to the network, then it may not correctly reflect the
overall video label, resulting in a false label input. The cur-
rent ConvNets approach individually obtains the prediction
scores from all sampled inputs from a video. Then, the final
prediction for a video is computed by aggregating all these
prediction scores resulted from each sampled input. How-
ever, this simple aggregation cannot completely solve the
aforementioned issue. This work tackles this important prob-
lem by learning a new general representation which reflects
the overall video label. This approach gives to the classifier
access to the deep features extracted over the entire video.

In this paper, we propose the following main contribu-
tions: (i) provide a new encoding approach specifically de-
signed for working with deep features. We exploit the na-
ture of deep features, with the goal of capturing the highest
feature responses from the highest neuron activation of the
network. (ii) efficiently incorporate the spatio-temporal in-
formation within the encoding method by taking into account
the features position and specifically encode this aspect.
Spatio-temporal information is crucially important when
dealing with video classification. Our final proposed encod-
ing method (illustrated in Figure 1), Spatio-Temporal Vector

of Locally Max Pooled Features (ST-VLMPF), performs two
different assignments of the features. One is based on their
similarity information, the other on the spatio-temporal in-
formation. For each resulted assignment we perform a spe-
cific encoding, by performing two max-poolings and one
sum-pooling of the information. (iii) provide an action
recognition scheme to work with deep features, which can be
adopted to obtain impressive results with any already trained
network, without the need for re-training or fine tuning on
a particular dataset. Furthermore, our framework can easily
combine different information extracted from different net-
works. In fact, our pipeline for action recognition provides
a reliable representation outperforming the previous state-of-
the-art approaches, while maintaining a low complexity. We
make the code for our proposed ST-VLMPF encoding pub-
licly available (https://iduta.github.io/software.html).

The rest of the paper is organized as following: Section 2
summarizes the related works. Section 3 introduces our en-
coding method. Section 4 presents the local deep feature ex-
traction pipeline. The experimental evaluation is presented
in Section 5. The conclusions are drawn in Section 6.

2. Related work
There are many works focusing on improving the fea-

ture encoding step, as the resulted final representation, which
serves as input for a classifier, is a key component for the
system performance. Super vector-based encoding methods
are among the most powerful representation generators. Im-
proved Fisher Vectors (iFV) [29] is one of the state-of-the-art
super vector-based encoding methods which performs a soft
assignment of the features and incorporates first- and second-
order information. Vector of Locally Aggregated Descriptors
(VLAD) [15] is a simplification of iFV capturing only first-
order information and performing a hard assignment of the
features. Super Vector Coding (SVC) [55] method keeps the
zero-order and first-order statistics, thus SVC can be seen as
a combination between Vector Quantization (VQ) [35] and
VLAD.

Many recent works try to improve the aforementioned
methods. The work in [26] proposes to improve VLAD by
concatenating the second- and third-order statistics, and us-
ing supervised dictionary learning. The work in [22] pro-
poses to use Random Forests in a pruned version for the
trees to build the vocabulary and then additionally concate-
nate second-order information similar as iFV. The works
in [20, 21] consider a Spatial Pyramid approach to capture
the information about features location, however, the scal-
ability is an issue for this method, as it increases consider-
ably the size of the final representation and it is not feasi-
ble for dividing the video in more than 4 segments. The
work in [1] proposes to use intra-normalization to improve
VLAD performance. In [9] is proposed a double assignment
for VLAD to boost the accuracy. The work in [28] uses a
multi-layer nested iFV encoding to boost the performance.



Different from aforementioned methods which are initially
built to encode hand-crafted features, our work proposes a
method specifically designed for local deep features encod-
ing.

Recently, encouraged by deep learning breakthroughs,
many works [3, 17, 25, 33, 34, 39, 40, 49, 52] encapsulate
all three main steps: feature extraction, encoding and classi-
fication, in an end-to-end framework. The work in [33] uses
two streams, to capture both appearance and motion infor-
mation. The works in [12, 13] are based on rank pooling
for encoding; the authors in [3] extend this idea to dynamic
images to create a video representation. Over the aforemen-
tioned approaches, our proposed method has the advantage
of being able to use any available trained network without
the need to train, re-train or fine tune it, obtaining impres-
sive performance, even improving the original network re-
sults. Furthermore, our method can easily combine different
networks, with different source of information, to create a
competitive video representation.

3. Proposed ST-VLMPF encoding method
In this section we introduce our proposed encoding ap-

proach for deep features, Spatio-Temporal Vector of Lo-
cally Max Pooled Features (ST-VLMPF). We initially learn
a codebook, C, using k-means, from a large subset of ran-
domly selected features extracted from a subset of videos
from the dataset. The outcome represents k1 visual words,
C={c1, c2, ..., ck1}, which are basically the means of each
feature cluster learned with k-means. When we extract the
features we also retain their location within the video. For
each feature we associate a position p:

p = (x̄, ȳ, t̄); x̄ =
x

h
, ȳ =

y

w
, t̄ =

t

#fr
(1)

where h, w and #fr represent the height, width and the
number of frames of the video. Therefore, x̄, ȳ, t̄ correspond
to the normalized x, y, t position with respect to the video.
This normalization guarantees that the position values range
between the same interval [0;1] for any video.

In parallel with the first codebookC, we also learn with k-
means a second codebook, PC={pc1, pc2, ..., pck2}, from
the corresponding selected feature locations. The size of PC
is k2 and the outcome represents the positions codebook. The
codebook PC is computed from the location information of
the features used for the first codebook C. This is an auto-
matic way to propose a k2 spatio-temporal video divisions.

After building the codebooks, we can start creating the
final video representation, which serves as input for a clas-
sifier. Figure 1 sketches the pipeline that a video traverses
to obtain its final representation. The framework starts
by extracting the local features from the video (see Sec-
tion 4). The video is represented by its extracted local fea-
turesX={x1, x2, ..., xn} ∈ Rn×d, where d is the feature di-
mensionality and n is the total number of the local features of

the video. Together with the local features, we retain, as ex-
plained above, their positions P={p1, p2, ..., pn} ∈ Rn×3.

Our proposed encoding method performs two hard assign-
ments using the obtained codebooks, the first is based on
the features similarity and the second is based on their po-
sitions. For the first assignment each local video feature xj

(j=1, ..., n) is assigned to its nearest visual word from the
codebook C. Then, over the groups of features assigned to
a cluster ci (i=1, ..., k1) we compute a vector representation
vci=[vci1 , v

ci
2 , ..., v

ci
d ], where each vcis (s iterates over each

dimension of the vector, s=1, ..., d) is formally computed as
following:

vcis = sign(xj,s) max
xj:NN(xj)=ci

|xj,s| (2)

where NN(xj) denotes the nearest neighborhood centroid of
the codebook C for the feature xj, basically it guarantees
that we perform separately the pooling over each group of
features that are assigned to a visual word; the sign function
returns the sign of a number and |.| represents the absolute
value.

Basically, Equation 2 obtains the maximum absolute
value while keeping the initial sign for the returned final re-
sult. In Figure 1 we name this similarity max-pooling over
features, as the features are grouped based on their similar-
ity and then perform max-pooling over each resulted group.
The concatenation of all vectors [vc1 , vc2 , ..., vck1 ], repre-
sents the VLMPF (Vector of Locally Max Pooled Features)
encoding, with final vector size (k1×d).

After the first assignment, we also retain the centroid
membership of each feature, with the objective of preserving
the associated similarity-based cluster information. For each
feature, we represent the membership information by a vec-
tor m with the size equal to the number of visual words k1,
where all the elements are zero, except one value (which is
equal to 1) that is located on the position corresponding to the
associated centroid. For instance, m=[0100...00] maps the
membership feature information to the second visual word
of the codebook C.

We perform a second assignment based on the features
positions. The bottom part of Figure 1 shows this path. Each
feature position pj from P is assigned to its nearest centroid
from codebook PC. After we group the features based on
their location we compute another vector representation, by
performing two pooling strategies: one max-pooling over the
spatio-temporal clustered features and another sum-pooling
over the corresponding spatio-temporal clustered features
membership. We concatenate the results of these two pool-
ings from each cluster pcr (r=1, ..., k2). Therefore, for each
spatio-temporal group of features we compute a vector repre-
sentation vpcr=[vpcr1 , vpcr2 , ..., vpcrd ], where each vpcrs is for-



mally computed as following:

vpcrs = cat
[

sign(xj,s) max
pj :NN(pj)=pcr

|xj,s|,( ∑
pj :NN(pj)=pcr

mj,i

)α ] (3)

where cat denotes the concatenation and NN(pj) denotes
the nearest neighborhood visual word of the codebook PC
for the feature position pj . Due to the fact that the sum-
pooling over the membership information can create peaks
within the vector we normalize the result of sum-pooling
similar to power normalization, with standard α=0.5. Ba-
sically, in this case we perform square root over the result of
the sum-pooling to reduce the peaks within the final vector.

Differently from Equation 2, in Equation 3 we group
the features based on the spatio-temporal information and
then we compute the maximum absolute value while keep-
ing the original sign over the features. We also concate-
nate in Equation 3 the membership information regarding
the feature similarity obtained from the first assignment
with the goal of encapsulating together with spatio-temporal
information also the similarity membership of the spatio-
temporal grouped features. We concatenate all these vectors
[vpc1 , vpc2 , ..., vpck2 ] to create the ST (Spatio-Temporal) en-
coding, which results in a (k2×d+ k2×k1) vector size.

Finally, we concatenate the ST and VLMPF encodings to
create the final ST-VLMPF representation, which serves as
input the classifier. Therefore, the final size of the vector for
ST-VLMPF representation is (k1× d) + (k2× d + k2×k1).
The goal of ST-VLMPF is to provide a reliable representation
which incorporates the deep features over the entire video,
providing to the classifier a more complete information for
taking the right decision.

4. Local deep features extraction
This section presents the pipeline for local deep features

extraction. The approaches based on convolutional net-
works (ConvNets) [3, 17, 25, 33, 34, 39, 40, 49, 52] have
recently obtained very competitive results over traditional
hand-crafted features. The videos contain two main sources
of information: appearance and motion. In our pipeline for
feature extraction we individually use three streams: a spa-
tial stream for capturing the appearance, a temporal stream
for capturing the motion and a spatio-temporal stream for
capturing at the same time both appearance and motion in-
formation. The pipeline for local deep feature extraction is
illustrated in Figure 2, where for a given video we extract,
independently for each of three networks, the features maps
with spatial information.

For capturing the appearance information in our spatial
stream we use the VGG ConvNet in [34], which is a network
with 19 layers. The local deep feature extraction pipeline for
this network is depicted in the upper part of Figure 2. The
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Figure 2: The framework for deep local feature extraction pipeline.

input of VGG19 ConvNet is an image with 224×224 res-
olution and three channels for the color information. After
we extract the individual frames from a video, we accord-
ingly resize them to the required input size of the network.
For each individual frame we take the output of the last con-
volutional layer with spatial information, pool5. Our choice
for the convolutional layer is motivated by the fact that the
deeper layers provide high discriminative information. By
taking a layer with spatial information we can extract local
deep features for each frame of the video, containing also the
details about spatial membership of the features. The output
of pool5 is a feature map with a spatial size of 7×7 and 512
channels. For extracting local deep features from a feature
map we individually take each spatial location and concate-
nate the values along all 512 channels, obtaining local deep
features with 512 dimensions. Thus, from each frame we ob-
tain 7×7=49 local deep features and each feature is a 512
dimensional vector. Therefore, for each video we obtain in
total #frames×49 local deep features. SCN refers to the
features extracted with this Spatial Convolutional Network.

For the motion information we use the re-trained network
in [49]. This deep network, also VGG, is initially proposed
in [34] and contains 16 layers. The authors in [49] re-trained
the VGG ConvNet for a new task with new input data using
several good practices for the network re-training, such as
pre-training to initialize the network, smaller learning rate,
more data augmentation techniques and high dropout ratio.
The VGG ConvNet is re-trained for action recognition task
using the UCF101 dataset [37]. The input to the temporal
ConvNet is 10-stacked optical flow fields, each of them with
one image for vertical and one image for horizontal motion.
Therefore, in total there are 20-staked optical flow images
as one input to the network. To extract optical flow fields
we use the OpenCV implementation of the TVL1 algorithm
[53]. For the temporal ConvNet we also take the output of the
last convolutional layer with structure information (pool5).
The pool5 layer has the spatial size of feature maps of 7×7
and 512 channels. The final local deep features for an input



are obtained by concatenating the values from each spatial
location along all the channels, resulting in 49 local features
for an input. This results in (#frames−9)×49 local deep
features for a video using the temporal ConvNet. TCN refers
to the features extracted with this Temporal Convolutional
Network.

For the spatio-temporal stream, represented at the bottom
part of Figure 2, we use the 3D ConvNet [40]. This net-
work is trained on Sports-1M dataset [17] and contains 16
layers. The network is designed to capture both appearance
and motion information by using 3D convolutional kernels.
The input of the network is a 16 frame-long clip extracted
from the video. Similar to the previous two networks used
in our pipeline, we use a sampling step size of one frame
to iterate over the frames of the video for creating the input
clips. As the last layer of this network with spatial informa-
tion has the size of the feature maps of only 4×4, we consider
in our pipeline one layer before, which is called conv5b. The
conv5b layer has a similar spatial size of the feature maps as
the previous two networks i.e., 7×7 and similar number of
channels i.e., 512. However, the conv5b layer contains two
features maps, each of them 7×7×512. In our pipeline, for
this network, for an input, we build only one feature map of
7×7×512 by taking the maximum value for each position of
the both feature maps from conv5b. Then, we can extract the
local deep feature similar to the previous two networks. For
the 3D network, the total number of local deep features is
(#frames−15)×7×7 for an input video. Each resulted lo-
cal deep feature is a vector with also 512 dimensions. We
refer to the features extracted with this Convolutional 3D
network as C3D. For all resulted local deep features from
these three networks, the normalized positions, needed for
ST-VLMPF, are extracted based on the localization on the
feature maps.

5. Experimental Evaluation
This section presents the experimental part, where we test

our proposed framework in the context of action recognition.

5.1. Datasets
We evaluate our framework on three of the most popular

and challenging datasets for action recognition: HMDB51
[18], UCF50 [30], and UCF101 [37].

The HMDB51 dataset [18] contains 51 action categories,
with a total of 6,766 video clips. We use the original non-
stabilized videos, and we follow the original protocol using
three train-test splits [18]. We report average accuracy over
the three splits as performance measure.

The UCF50 dataset [30] contains 6,618 realistic videos
taken from YouTube. There are 50 human action categories
mutually exclusive and the videos are split into 25 predefined
groups. We follow the recommended standard procedure and
perform leave-one-group-out cross validation and report av-
erage classification accuracy over all 25 folds.

SCN TCN C3D
256 512 256 512 256 512

VLMPF 43.5 44.7 56.6 58.8 52.8 53.4
ST-VLMPF 47.0 49.8 58.9 61.3 55.1 56.3

Table 1: The final accuracy on HMDB51 using 32 spatio-temporal
video divisions, with 256 and 512 feature dimensionality. We re-
port also the results when the spatio-temporal information is not
used (VLMPF).

The UCF101 dataset [37] is a widely adopted benchmark
for action recognition, consisting in 13,320 realistic videos
and 101 action classes. We follow for evaluation the rec-
ommended default three training/testing splits and report the
average recognition accuracy over these three splits.

5.2. Experimental setup
For the motion stream of the local deep feature extraction

pipeline, the work in [49] provides three trained models for
each split of the UCF101 dataset. We accordingly use the
models for each split of the UCF101 for feature extraction.
For the other two datasets, HMDB51 and UCF50, we use
only the model trained on the split1 of UCF101 to extract the
local deep features.

We compare our proposed ST-VLMPF encoding method
with two state-of-the-art approaches for feature encoding:
improved Fisher Vectors (iFV) [29] and Vector of Locally
Aggregated Descriptors (VLAD) [15]. We create the code-
books from 500K random selected features extracted from a
subset of videos. We set the size of the codebook to 256 vi-
sual words, which is the standard adopted size, widely used
by the community when using super vector-based encoding
methods. Setting also the size of codebook C (k1=256)
for ST-VLMPF the same as for the other encoding methods
makes easier to compare them and also it is a fair compar-
ison having a similar number of visual words for all super
vector-based encoding methods.

When using our encoding method, ST-VLMPF, we L2
normalize the final video representation vector before clas-
sification. Many works, such as [42, 45], indicate that iFV
and VLAD perform better if after feature encoding the Power
Normalization (PN) is applied followed by L2-normalization
(||sign(x)|x|α||). We follow this line for iFV and VLAD,
setting α to the standard widely used value of 0.5. The rea-
son for which iFV and VLAD work better when using PN
is due to the fact that their resulted final representation con-
tains large peaks within the vector and PN helps to reduce
them and make the vector smoother. Instead, in our applica-
tion, ST-VLMPF does not provide a final vector containing
large peaks, therefore, it is not necessary to apply also PN.
For the classification part, in all the experiments we use a
linear one-vs-all SVM with the parameter C=100.

5.3. Parameter tuning
We present the parameter tuning regarding the number of

divisions of a video and the features dimensionality. All the
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tuning experiments are reported on the HMDB51 dataset.

Figure 3 presents the evaluation of parameter k2, which
denotes the size of codebook PC. The k2 parameter repre-
sents the number of video divisions used for our ST-VLMPF
encoding approach. We report the evaluation on all three lo-
cal deep features considered: SCN, TCN and C3D; keeping
all 512 dimensions of the original local deep features. The
0 value illustrated in Figure 3 represents the case when the
spatio-temporal information is not considered, which refers
to the VLMPF encoding from Figure 1. Remarkably, the per-
formance of ST-VLMPF for all three features has a continu-
ous significant boost in accuracy when increasing the video
divisions, until k2=32. This graph clearly shows that our ap-
proach to incorporate spatio-tempral information within the
encoding process brings significant gain on the final accu-
racy for an action recognition system. While for the C3D
features the increase in the accuracy stops around the value
of k2=32, for the SCN and TCN the accuracy still continue
to have a slight increase. However, we set k2=32 for our ST-
VLMPF encoding in all remaining experiments in this paper,
as this value provides a good trade-off between accuracy and
computational cost and the size of the final video representa-
tion.

Figure 4 illustrates the evaluation when using PCA to
reduce the feature dimensionality and decorrelate the data.
From the graph we can see that for all features the accuracy
is drastically influenced by the number of dimensions kept.
Decreasing the features dimensionality from the original size
of 512 to 64 causes a considerable drop in accuracy for SCN
from 0.498 to 0.464, for TCN from 0.613 to 0.545 and for
C3D from 0.563 to 0.525. For the next experiments we will
consider the original features dimensionality of 512 and also
when the dimensionality is decreased to 256.

Table 1 summarizes the performance numbers obtained
for all three features. This table includes the results with two
settings for feature dimensionality: 256 and 512. We report
also the results when the spatio-temporal information is not
used within the encoding process (VLMPF). In this way we
can directly observe the benefit of incorporating the spatio-
temporal information in the encoding method over for the
performance of the system.

5.4. Comparison to other encoding approaches

In this part we present the comparison of our ST-VLMPF
encoding method, with VLAD and iFV, in terms of accuracy
and computational efficiency.

Accuracy comparison. We present the comparison of
ST-VLMPF with VLAD and iFV in terms of accuracy over
three datasets: HMDB51, UCF50 and UCF101. We report
the comparison results with the features dimensionality of
256 and the 512. Table 2 shows the comparison accuracy
results for all three datasets. On the challenging HMDB51
dataset ST-VLMPF clearly outperforms by a large margin
iFV and VLAD for all three features. For instance, for SCN
with 256 dimensionality, ST-VLMPF obtains with 9.8 per-
centage points more than VLAD and with 10.4 percentage
points more than iFV. Similar results are reported for UCF50
and UCF101 respectively, where we can see that our pro-
posed encoding method, ST-VLMPF, outperforms also by a
large margin iFV and VLAD in all the cases, showing the
effectiveness of our representation. We can also see from Ta-
ble 1 that our method without spatio-temporal information,
still outperforms iFV and VLAD.

Efficiency comparison. Table 3 presents an efficiency
comparison of our ST-VLMPF with iFV and VLAD. The
timing measurements are performed on a single core Intel(R)
Xeon(R) CPU E5-2690 2.60GHz, using 500 randomly sam-
pled videos from HMDB51 dataset.

We report the average number of frames per second and
number of seconds per video that an encoding method can
process for creating a video representation. For our encoding
method we report also the results without using the spatio-
temporal information (VLMPF) for directly observing the
cost of adding the spatio-temporal encoding. We can see that
by far the most expensive method for the computational cost
is iFV. This is due to the fact that the method uses soft assign-
ment and high order statistics to create the final representa-
tion. The VLAD encoding is slightly slower than VLMPF
and this is due to the computation of the residuals. The
computational cost for our ST-VLMPF is comparable with
VLAD, however, it is more efficient than iFV, being more
than 5 times faster.

The last two columns of Table 3 present the dimensional-



HMDB51 (%) UCF50 (%) UCF101 (%)
SCN TCN C3D SCN TCN C3D SCN TCN C3D

256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512
iFV 36.6 41.8 51.0 56.6 46.1 49.0 75.7 81.0 95.2 96.1 84.7 88.8 67.8 74.1 84.1 85.4 77.7 79.8

VLAD 37.2 40.3 51.1 53.9 46.8 49.1 78.4 80.2 95.5 95.4 86.4 89.0 69.9 73.4 83.7 85.2 78.6 81.4
ST-VLMPF 47.0 49.8 58.9 61.3 55.1 56.3 86.3 87.7 97.1 97.2 94.1 94.7 80.4 81.8 86.6 87.3 85.5 86.2

Table 2: Accuracy comparison on all three datasets. Best results are in bold.

SCN 256 SCN 512 TCN 256 TCN 512 C3D 256 C3D 512 256 512
fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid dim dim

iFV 253.2 0.357 168.7 0.536 301.4 0.300 197.6 0.457 308.7 0.293 202.3 0.447 131,072 262,144
VLAD 1967.5 0.046 1143.8 0.079 2213.8 0.041 1299.5 0.070 2372.5 0.038 1375.0 0.066 65,536 131,072

VLMPF 2049.4 0.044 1192.6 0.076 2329.2 0.039 1370.9 0.066 2455.0 0.037 1426.0 0.063 65,536 131,072
ST-VLMPF 1531.1 0.059 964.7 0.094 1741.0 0.052 1062.0 0.085 1769.6 0.051 1086.5 0.083 81,920 155,648

Table 3: Computational efficiency comparison. We report the number of frames per second (fr/sec) and seconds per video (sec/vid). Last
two columns show the dimensionality generated by each encoding method for 256 and 512 feature dimensionality. Best results are in bold.

ity of the generated video representations for each encoding
method. We can see that iFV is more demanding, generat-
ing a large dimensionality, while ST-VLMPF is comparable
to VLAD. Even though the generated dimensionality is rel-
atively high, in the case of a linear SVM (as we use in this
paper) for ST-VLMPF with 512 feature dimensionality, the
classification time to get the predicted class for a given video
representation is less than 0.001 seconds, therefore, this is a
negligible cost.

5.5. Fusion strategies
The previous results show that our ST-VLMPF approach

obtains the best accuracy on all datasets and for all fea-
ture types. Also we show that the accuracy drops signif-
icantly when the features dimensionality decreases, there-
fore, to obtain the final score we use all 512 feature dimen-
sions. Combining deep features with hand-crafted features
can boost the performance of the system. Therefore, in this
paper we report three feature combinations: DF, DF+HMG
and DF+HMG+iDT. DF (Deep Features) is represented by
SCN, TCN and C3D, all deep features are encoded with
our ST-VLMPF method. As previously pointed, to extract
the TCN features we use a ConvNet, which is trained on
the split1 of UCF101. As the UCF101 is an extension of
the UCF50 dataset, to avoid the risk of overfitting, for any
further fusion and for the comparison with the state-of-the-
art, we excluded TCN features for the UCF50 dataset re-
sults. HMG (Histograms of Motion Gradients) [10] is a
hand-crafted descriptor which efficiently captures motion in-
formation. We used the code provided by the authors with
default settings for descriptor extraction, and we encode the
descriptors accordingly as recommended in the paper, using
iFV. iDT (improved Dense Trajectories) [45] is a state-of-
the-art hand-crafted approach, and is represented in our pa-
per by four individual hand-crafted descriptors (HOG, HOF,
MBHx, MBHy). We also use the authors provided code to
extract the descriptors with default settings, and create the

final representation as recommended also using iFV. For all
hand-crafted features we individually apply before classifi-
cation PN (α=0.1) and then L2 as recommended in [10].

For these four feature combinations we evaluate different
fusion strategies: Early, where after we individually build
the final representation for each feature type and normalize
it accordingly, we concatenate all resulted representations in
a final vector, we apply L2 normalization for making unit
length and then perform the classification part; sLate, where
we make late fusion by making sum between the classifiers
output from each representation; wLate, where we give dif-
ferent weights for each feature representation classifier out-
put, and then we perform the sum. The weight combinations
are tuned by taking values between 0 and 1 with the step
0.05; sDouble, where besides summing the classifier out-
put from the individual feature representations, we also add
the classifier output resulted from the early fusion; wDouble,
where we tune the weight combinations for the sum, similar
to wLate.

Table 4 shows that early fusion performs better than late
fusion. Double fusion combines the benefit of both, early
and late fusion, and boosts further the accuracy. For more
challenging datasets such as HMDB51, combining deep fea-
tures with hand-crafted features improves considerably the
accuracy, while for less challenging datasets such as UCF50,
the hand-crafted features do not bring significant contribu-
tion over deep features. With this framework, we obtain
outstanding final results of 73.1% on HMDB51, 97.0% on
UCF50 and 94.3% on UCF101.

5.6. Comparison to the state-of-the-art
Table 5 presents the comparison of our final results with

the state-of-the-art approaches on HMDB51, UCF50 and
UCF101. For this comparison we report two final results.
First result, represents only our ST-VLMPF(DF), which is
obtained by using our proposed encoding method over all
three deep features (SCN, TCN and C3D). The second one,



HMDB51 (%) UCF50∗ (%) UCF101 (%)
DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT

Early 68.6 69.5 71.7 95.0 95.3 96.7 93.5 94.0 94.3
sLate 66.4 66.5 68.8 94.2 94.4 95.6 92.0 92.5 92.4
wLate 67.6 67.8 70.9 94.8 95.1 96.6 92.2 92.7 93.4

sDouble 68.3 68.4 70.3 94.6 94.9 96.1 92.6 93.1 92.8
wDouble 69.5 70.3 73.1 95.1 95.4 97.0 93.6 94.0 94.3

Table 4: Fusion strategies. DF (Deep Features) represent all three local deep features (SCN, TCN, C3D), HMG (Histograms of Motion
Gradients) [10] and iDT (improved Dense Trajectories) [45] is represented with HOG, HOF, MBHx and MBHy. The best performance
results are in bold for each fusion type over each feature representation combination. The best result over each dataset is also underlined.
(∗TCN features are not considered for UCF50 dataset as explained above.)

HMDB51 (%) UCF50∗ (%) UCF101(%)
Jain et al. [14] (2013) 52.1 Solmaz et al. [36] (2013) 73.7 Wang et al. [46] (2013) 85.9
Zhu et al. [56] (2013) 54.0 Reddy et al. [30] (2013) 76.9 Karpathy et al. [17] (2014) 65.4
Oneata et al. [24] (2013) 54.8 Shi et al. [32] (2013) 83.3 Simonyan et al. [33] (2014) 88.0
Wang et al. [45] (2013) 57.2 Wang et al. [43] (2013) 85.6 Wang et al. [44] (2015) 86.0
Kantorov et al. [16] (2014) 46.7 Wang et al. [45] (2013) 91.2 Sun et al. [39] (2015) 88.1
Simonyan et al. [33] (2014) 59.4 Ballas et al. [2] (2013) 92.8 Ng et al. [52] (2015) 88.6
Peng et al. [28] (2014) 66.8 Everts et al. [11] (2014) 72.9 Tran et al. [40] (2015) 90.4
Sun et al. [39] (2015) 59.1 Uijlings et al. [41] (2014) 80.9 Wang at al. [49] (2015) 91.4
Wang et al. [44] (2015) 60.1 Kantorov et al. [16] (2014) 82.2 Wang et al. [48] (2015) 91.5
Wang et al. [48] (2015) 65.9 Ciptadi et al. [4] (2014) 90.5 Zhang et al. [54] (2016) 86.4
Park et al. [25] (2016) 56.2 Narayan et al. [23] (2014) 92.5 Peng et al. [27] (2016) 87.9
Seo et al. [31] (2016) 58.9 Uijlings et al. [42] (2015) 81.8 Park et al [25] (2016) 89.1
Peng et al. [27] (2016) 61.1 Wang et al. [44] (2015) 91.7 Bilen et al. [3] (2016) 89.1
Yang et al. [51] (2016) 61.8 Peng et al. [27] (2016) 92.3 Diba et al. [8] (2016) 90.2
Bilen et al. [3] (2016) 65.2 Duta et al. [10] (2016) 93.0 Fernando et al. [12] (2016) 91.4
Fernando et al. [12] (2016) 66.9 Seo et al. [31] (2016) 93.7 Yang et al. [51] (2016) 91.6
Our ST-VLMPF(DF) 69.5 Our ST-VLMPF(DF) 95.1 Our ST-VLMPF(DF) 93.6
Our best 73.1 Our best 97.0 Our best 94.3

Table 5: Comparison to the state-of-the-art. Our ST-VLMPF(DF) represents the results obtained with only our representation over deep
features (SCN, TCN and C3D). Our best is the final result from the best combination of our ST-VLMPF with hand-crafted features HMG
[10] and iDT (HOG, HOF, MBHx, MBHy) [45]. (∗TCN features are not considered for UCF50 dataset as explained above.)

is our best result reported in this paper, obtained using ST-
VLMPF(DF) + HMG + iDT.

Our ST-VLMPF representation outperforms the state-of-
the-art approaches by a large margin on all three datasets,
which demonstrates that our method provides a powerful
video representation with very competitive results. Further-
more, with our best results, which use also hand-crafted
features, we improve the state-of-the-art by 6.2 percentage
points on the challenging HMDB51 dataset, by 3.3 per-
centage points on UCF50 and by 2.7 percentage points on
UCF101. It is important to highlight that these results are
obtained using pre-trained networks which are not re-trained
or fine-tuned on our particular datasets (except TCN features
for UCF101 dataset). For instance, for HMDB51 dataset all
three networks did not see any training example from this
dataset, and we still obtain impressive results. Therefore, our
approach is also suitable in various practical scenarios when
re-training or fine-tuning is more difficult to accomplish.

6. Conclusion

In this paper we introduced the Spatio-Temporal Vec-
tor of Locally Max Pooled Features (ST-VLMPF), a super
vector-based encoding method specifically designed for en-
coding local deep features. We also efficiently incorporate
the spatio-temporal information within the encoding method,
providing a significant boost in accuracy. ST-VLMPF out-
performs two of the most powerful encoding methods by a
large margin (Improved Fisher Vectors and Vector of Locally
Aggregated Descriptors), while maintaining a low computa-
tional complexity. Our approach provides a solution for in-
corporating deep features over the entire video, helping to
solve the issue with the false label assigned to the network
input. The comparison of our action recognition pipeline
with the state-of-the-art approaches over three challenging
datasets proves the superiority and robustness of our video
representation.
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